会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • ENZYME LINKED ASSAY METHODS AND APPARATUSES
    • WO2020193934A1
    • 2020-10-01
    • PCT/GB2020/050267
    • 2020-02-06
    • SUMITOMO CHEMICAL COMPANY LIMITEDCAMBRIDGE DISPLAY TECHNOLOGY LIMITED
    • LEE, Andrew
    • G01N33/543B01L3/00G01N21/63G01N33/58
    • A method of measuring a concentration of a target analyte (17) using an enzyme linked assay is described. The enzyme linked assay is conducted using a fluidic device (1) including one or more flow cells (2). Each flow cell (2) includes a channel (7) and at least two ports (8a, 8b) in fluid communication with the channel (7). At least one internal surface (9) of each channel (7) is functionalised with a capture molecule (10) which enables functionalising the flow cell (2) using an enzyme linked assay applied to a sample (12). The capture molecules will immobilise complexes of enzyme molecules bound to target analyte. The fluidic device (1) also includes a photodiode (3) corresponding to each flow cell (2) and arranged to receive light (11) from the corresponding flow cell (2). Each photodiode (3) is attached to the corresponding flow cell (2) or each photodiode (3) is integrally formed with the corresponding flow cell (2). The method includes, for a flow cell (2) of the fluidic device (1), functionalising the flow cell (2) using an enzyme linked assay applied to a sample (12), such that in response to the sample (12) contains the target analyte (17), the flow cell (2) will become functionalised with an immobilised concentration (21) of enzyme molecules (15) bound to the target analyte (21). The method also includes, for each flow cell (2), introducing a substrate (23) to the flow cell. The substrate (23) is convertible into a reporting substance (24) by the enzyme molecules (15). The method also includes recording, using the photodiode (3) corresponding to the flow cell (2), a time series (3) of measured values corresponding to an optical property of the flow cell (2) which depends on a concentration of the reporting substance (24). The method also includes determining a first time point (t 1 ) corresponding to the introduction of the substrate (23) to the flow cell (2). The method also includes determining a second time point (t 2 ) corresponding to an endpoint of linear kinetics for the conversion of substrate (23) into reporting substance (24). The method also includes estimating, based on the measured values obtained between the first and second time points (t 1 , t 2 ), a concentration of the target analyte (17) in the sample.