会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 15. 发明授权
    • VLSI layouts of fully connected generalized and pyramid networks with locality exploitation
    • US10554583B2
    • 2020-02-04
    • US16029645
    • 2018-07-08
    • Venkat Konda
    • Venkat Konda
    • G06F17/50H04L12/933H04L12/50
    • VLSI layouts of generalized multi-stage and pyramid networks for broadcast, unicast and multicast connections are presented using only horizontal and vertical links with spacial locality exploitation. The VLSI layouts employ shuffle exchange links where outlet links of cross links from switches in a stage in one sub-integrated circuit block are connected to inlet links of switches in the succeeding stage in another sub-integrated circuit block so that said cross links are either vertical links or horizontal and vice versa. Furthermore the shuffle exchange links are employed between different sub-integrated circuit blocks so that spacially nearer sub-integrated circuit blocks are connected with shorter links compared to the shuffle exchange links between spacially farther sub-integrated circuit blocks. In one embodiment the sub-integrated circuit blocks are arranged in a hypercube arrangement in a two-dimensional plane. The VLSI layouts exploit the benefits of significantly lower cross points, lower signal latency, lower power and full connectivity with significantly fast compilation.The VLSI layouts with spacial locality exploitation presented are applicable to generalized multi-stage and pyramid networks, generalized folded multi-stage and pyramid networks, generalized butterfly fat tree and pyramid networks, generalized multi-link multi-stage and pyramid networks, generalized folded multi-link multi-stage and pyramid networks, generalized multi-link butterfly fat tree and pyramid networks, generalized hypercube networks, and generalized cube connected cycles networks for speedup of s≥1. The embodiments of VLSI layouts are useful in wide target applications such as FPGAs, CPLDs, pSoCs, ASIC placement and route tools, networking applications, parallel & distributed computing, and reconfigurable computing.