会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 71. 发明授权
    • Method of generating active semiconductor structures by means of
starting structures which have a 2D charge carrier layer parallel to
the surface
    • 通过具有平行于表面的2D电荷载体层的起始结构产生有源半导体结构的方法
    • US5396089A
    • 1995-03-07
    • US34315
    • 1993-03-22
    • Andreas D. WieckKlaus Ploog
    • Andreas D. WieckKlaus Ploog
    • H01L21/265H01L21/28H01L21/335H01L29/06H01L29/32H01L29/423H01L29/51H01L29/775H01L29/86H01L29/20H01L29/78H01L29/161H01L29/205
    • H01L21/2654B82Y10/00H01L21/28158H01L29/0653H01L29/32H01L29/4238H01L29/51H01L29/513H01L29/66469H01L29/775H01L29/86
    • A unipolar electronic component is proposed with a quasi one dimensional carrier channel which has all the characteristics of an FET. This component can be very simply produced, has "self-alignment" and linear gates with a low capacity in place of planar gates. In this way a very high operating frequency of the component is possible. The structure comprises an initially homogenous 2D-layer with a high carrier mobility which is formed by epitaxy of for example GaAs. The implantation of focussed ions (for example Ga.sup.+ with 100 keV) locally destroys the conductivity of the electron layer. The irradiated regions remain insulating at low temperature or room temperature even after illuminating the cristal with bandgap radiation. The writing in of the insulating layer is carried out along two paths on the chip so that the 2D-carrier layer is subdivided into three regions insulated from one another. The source and drain are only connected by a narrow channel 44 the width of which is continuously tunable by a gate potential which is simultaneously applied to the two gate regions relative to the source, so that a pronounced change of the carrier concentration and thus of the channel resistance arises. The specification also describes integrated circuits made using the same methods.
    • 提出了具有FET的所有特性的准一维载流子通道的单极电子元件。 该部件可以非常简单地制造,具有“自对准”和具有低容量的线性门来代替平面栅极。 以这种方式,组件的非常高的工作频率是可能的。 该结构包括通过例如GaAs的外延形成的具有高载流子迁移率的初始均匀的2D层。 聚焦离子(例如Ga +与100keV)的注入会局部地破坏电子层的导电性。 即使在用带隙辐射照射碎片之后,照射区域在低温或室温下保持绝缘。 绝缘层的写入沿着芯片上的两条路径进行,使得2D载体层被细分成彼此绝缘的三个区域。 源极和漏极仅由窄通道44连接,窄通道44的宽度可通过栅极电位连续可调,该栅极电位同时施加到相对于源极的两个栅极区域,使得载流子浓度明显变化 通道电阻出现。 本说明书还描述了使用相同方法制造的集成电路。
    • 74. 发明授权
    • Solid state quantum mechanical electron and hole wave devices
    • 固态量子力学电子和空穴波器件
    • US4985737A
    • 1991-01-15
    • US272175
    • 1988-11-16
    • Thomas K. GaylordKevin F. BrennanElias N. Glytsis
    • Thomas K. GaylordKevin F. BrennanElias N. Glytsis
    • H01L29/12H01L29/15H01L29/86
    • B82Y10/00H01L29/122H01L29/152H01L29/155H01L29/86Y10S977/759Y10S977/761
    • Solid state quantum mechanical electron or hole wave devices which are analogous to optical thin-film devices provide, among other things, energy selectivity for substantially ballistic electron or hole wave propagation in superlattice structures at energies above the superlattice potential energy barriers. Further, in accordance with the inventive method, the inventive devices may be designed by transforming existing optical thin-film design methods and existing optical interference filter designs into inventive semiconductor devices. This transformation from existing optical design methods and existing optical interference filter designs into semiconductor devices is performed for electron devices by mapping the optical phase index of refraction into a first solid state index of refraction for phase quantities which is proportional to the square root of the product of the electron kinetic energy and the electron effective mass and by mapping the optical amplitude index of refraction into a second solid state index of refraction for amplitude quantities which is proportional to the square root of the electron kinetic energy divided by the electron effective mass.
    • 类似于光学薄膜器件的固态量子力学电子或空穴波器件尤其提供了在超晶格势垒能量以上的能量下在超晶格结构中的基本弹道电子或空穴波传播的能量选择性。 此外,根据本发明的方法,可以通过将现有的光学薄膜设计方法和现有的光学干涉滤光器设计转变为本发明的半导体器件来设计本发明的器件。 对于电子器件,通过将光学相位折射率映射到与产品的平方根成比例的相位量的第一固态折射率来对现有的光学设计方法和现有的光学干涉滤光器设计进行半导体器件的转换 的电子动能和电子有效质量,并且通过将光学振幅折射率映射到与电子动能的平方根除以电子有效质量成比例的幅度量的第二固体折射率折射率。
    • 79. 发明授权
    • Semiconductor memory device
    • 半导体存储器件
    • US4247863A
    • 1981-01-27
    • US937937
    • 1978-08-30
    • Ryoiku Togei
    • Ryoiku Togei
    • G11C11/35H01L27/10H01L27/108H01L29/86H01L27/12
    • G11C11/35H01L27/10H01L27/108
    • Disclosed herein is a small-sized semiconductor memory device, wherein an N.sup.+ (P.sup.+)-type single region having an input function and an output function and an electrode for controlling the electrical potential in a P(N)-type Si substrate are provided on the top surface of the P(N)-type Si substrate. In order to store carriers, i.e., an information, in the bulk of the substrate, an N (P)-type buried layer is formed below the N.sup.+ (P.sup.+)-type input-output region, mentioned above. Information is quickly transferred from or into the buried layer by means of the punch-through effect, which is realized by spreading a depletion layer formed at a PN junction between the input-output region and the Si substrate. Since the carriers are stored in the bulk of the substrate, the size of the memory device is reduced and the surface property of the device does not exert a harmful influence on the carriers.
    • 这里公开了一种小型半导体存储器件,其中具有输入功能和输出功能的N +(P +)型单区域和用于控制P(N)型Si衬底中的电位的电极设置在 P(N)型Si衬底的顶表面。 为了在载体的大部分中存储载流子即信息,在上述N +(P +)型输入输出区域的下方形成N(P)型掩埋层。 通过穿透效应将信息快速地传送到掩埋层中,通过扩展在输入 - 输出区域和Si衬底之间的PN结处形成的耗尽层来实现。 由于载体存储在基板的主体中,所以存储器件的尺寸减小,并且器件的表面特性不会对载体产生有害的影响。
    • 80. 发明授权
    • High speed, high power plasma thyristor circuit
    • 高速,高功率等离子体晶闸管电路
    • US3945028A
    • 1976-03-16
    • US354580
    • 1973-04-26
    • Surinder KrishnaChang Kwei Chu
    • Surinder KrishnaChang Kwei Chu
    • H01L29/86G01S7/282H01L29/74H01L29/861H01L29/866H01L29/90
    • H01L29/861G01S7/282
    • A plasma thyristor circuit is provided for generating high power, ultra-short duration electrical signals. A silicon semiconductor body has first, second and third impurity regions therein with a PN junction formed at the transition between the first and second or the second and third impurity regions. The second impurity region has an impurity concentration of less than about 5 .times. 10.sup.14 atoms/cm.sup.3, and a width of greater than about 80 microns. The ratio of the punch-through voltage of the second impurity region to the reverse breakdown voltage of the PN junction is between 0.3 and 0.7. Power sources apply both a reverse bias voltage across the body greater than said punch-through voltage and less than said reverse breakdown voltage, and a current to the body having a density greater than the saturation current density of the second impurity region.
    • 提供等离子体晶闸管电路用于产生大功率,超短时间的电信号。 硅半导体本体具有其中在第一和第二或第二和第三杂质区之间的过渡处形成PN结的第一,第二和第三杂质区。 第二杂质区的杂质浓度小于约5×10 14原子/ cm 3,宽度大于约80微米。 第二杂质区的穿通电压与PN结的反向击穿电压的比值在0.3和0.7之间。 电源同时施加超过所述穿通电压并小于所述反向击穿电压的反向偏置电压,以及具有大于第二杂质区域的饱和电流密度的密度的电流。