会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 88. 发明申请
    • MOTOR-VEHICLE TRAJECTORY PLANNING AND CONTROL TO CAUSE AUTOMATED MOTOR-VEHICLES TO PERFORM LOW-SPEED MANOEUVRES IN AUTOMATED DRIVING
    • US20220169247A1
    • 2022-06-02
    • US17442379
    • 2020-10-23
    • C.R.F. SOCIETA' CONSORTILE PER AZIONI
    • Giulio BORRELLOEnrico RAFFONEClaudio REIMassimo FOSSANETTI
    • B60W30/14B60W30/12B60W30/06B60W40/072B60W60/00B60W10/20B60W10/18
    • An automotive electronic dynamics control system for a motor-vehicle equipped with and automotive automated driving system designed to cause the motor-vehicle to perform low-speed manoeuvres in automated driving.
      The automotive automated driving system comprises an automotive sensory system designed to detect motor-vehicle-related quantities, and automotive actuators comprising an Electric Power Steering, a Braking System, and a Powertrain.
      The electronic dynamics control system is designed to implement a Driving Path Planner designed to: receive data representative of static obstacles in the surroundings of the motor-vehicle and representing static space constraints to the motion of the motor-vehicle, and compute, based on the received data, a planned driving path for the motor-vehicle during a low-speed manoeuvre performed in automated driving. The electronic dynamics control system is further designed to implement a Model Predictive Control (MPC)-based Trajectory Planner and Controller designed to: receive from the Driving Path Planner data representative of the planned driving path and from the automotive sensory system data representative of positions and orientations of the motor-vehicle and of dynamic obstacles in the surroundings of the motor-vehicle and representing dynamic space constraints to the motion of the motor-vehicle, and compute, based on the received data, a planned lateral trajectory and a planned longitudinal trajectory for the motor-vehicle during the low-speed manoeuvre performed in automated driving. The electronic dynamics control system is further designed to implement a Motion Controller designed to: receive from the Trajectory Planner and Controller data representative of the planned lateral and longitudinal trajectories, and compute commands for the Electric Power Steering based on the planned lateral trajectory, and for the Braking System and the Powertrain based on the planned longitudinal trajectory. The Driving Path Planner is designed to compute the planned driving path as a planned driving corridor within which the motor-vehicle may be driven and made up of a series of driving path segments each with a length and an orientation referenced in an inertial reference frame.
      The MPC-based Trajectory Planner and Controller comprises: an MPC-based Lateral Trajectory Planner and Controller designed to compute the planned lateral trajectory as a series of steering requests referenced in a motor-vehicle reference frame; and an MPC-based Longitudinal Trajectory Planner and Controller designed to compute the planned longitudinal trajectory as a series of longitudinal acceleration requests. The Lateral Trajectory Planner and Controller is further designed to compute the planned lateral trajectory based on a linearized Lateral Trajectory Model which exhibits a singularity whenever the relative orientation of a couple of successive driving path segments of the planned driving path is equal to or higher than a given amount.
      The Lateral Trajectory Planner and Controller is further designed to dynamically modify relative orientation of the motor-vehicle reference frame with respect to the inertial reference frame along the planned driving path so as to result in the relative orientations of all of the couples of successive driving path segments of the planned driving path being lower than the given amount.