会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method of manufacturing variation resistant metal-oxide-semiconductor field effect transistor (MOSFET)
    • 制造耐变换金属氧化物半导体场效应晶体管(MOSFET)的方法
    • US09373684B2
    • 2016-06-21
    • US13424745
    • 2012-03-20
    • Asen AsenovGareth Roy
    • Asen AsenovGareth Roy
    • H01L21/336H01L21/8234H01L29/10H01L29/51H01L29/78H01L29/66
    • H01L29/105H01L29/517H01L29/665H01L29/66545H01L29/6659H01L29/66651H01L29/7833
    • Variation resistant metal-oxide-semiconductor field effect transistors (MOSFET) are manufactured using a high-K, metal-gate ‘channel-last’ process. Between spacers formed over a well area having separate drain and source areas, a cavity is formed. Thereafter an ion implant step through the cavity results in a localized increase in well-doping directly beneath the cavity. The implant is activated by a microsecond annealing which causes minimum dopant diffusion. Within the cavity a recess into the well area is formed in which an active region is formed using an un-doped or lightly doped epitaxial layer. A high-K dielectric stack is formed over the lightly doped epitaxial layer, over which a metal gate is formed within the cavity boundaries. In one embodiment of the invention a cap of poly-silicon or amorphous silicon is added on top of the metal gate.
    • 使用高K金属栅极“通道最后”工艺制造耐变压金属氧化物半导体场效应晶体管(MOSFET)。 在形成有具有分离的漏极和源极区域的阱区域之间的间隔物之间​​,形成空腔。 此后,通过空腔的离子注入步骤导致在腔的正下方的阱掺杂的局部增加。 通过微秒退火激活植入物,这导致最小的掺杂剂扩散。 在空腔内形成了进入阱区的凹槽,其中使用未掺杂或轻掺杂的外延层形成有源区。 在轻掺杂的外延层上形成高K电介质堆叠,在腔边界内形成金属栅极。 在本发明的一个实施例中,在金属栅极的顶部添加多晶硅或非晶硅的盖。
    • 5. 发明授权
    • Gate recessed FDSOI transistor with sandwich of active and etch control layers
    • 栅极嵌入式FDSOI晶体管,夹层有主动和蚀刻控制层
    • US09269804B2
    • 2016-02-23
    • US13950868
    • 2013-07-25
    • Gold Standard Simulations Ltd.
    • Asen Asenov
    • H01L29/66H01L29/78H01L29/786
    • H01L29/78H01L29/66666H01L29/7848H01L29/78684
    • The structure and the fabrication methods herein implement a fully depleted, recessed gate silicon-on-insulator (SOI) transistor with reduced access resistance, reduced on-current variability, and strain-increased performance. This transistor is based on an SOI substrate that has an epitaxially grown sandwich of SiGe and Si layers that are incorporated in the sources and drains of the transistors. Assuming a metal gate last complementary metal-oxide semiconductor (CMOS) technology and using the sidewall spacers as a hard mask, a recess under the sacrificial gate reaching all the way through the SiGe layer is created, and the high-K gate stack and metal gate are formed within that recess. The remaining Si region, having a precisely controlled thickness, is the fully depleted channel.
    • 本文的结构和制造方法实现了具有降低的存取电阻,降低的导通电流变化性和应变增加性能的完全耗尽的凹陷栅绝缘体上硅(SOI)晶体管。 该晶体管基于具有外延生长的SiGe和Si层的夹层的SOI衬底,其被并入晶体管的源极和漏极中。 假设金属栅最后互补金属氧化物半导体(CMOS)技术并且使用侧壁间隔物作为硬掩模,则在牺牲栅极下方的凹陷到达所有途径通过SiGe层,并且高K栅极堆叠和金属 门形成在该凹槽内。 具有精确控制厚度的剩余Si区域是完全耗尽的通道。