会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • REAL-TIME THROUGH-THICKNESS AND IN-PLANE STRAIN MONITORING IN CARBON FIBRE REINFORCED POLYMER COMPOSITES USING PLANAR OPTICAL BRAGG GRATINGS
    • US20220260363A1
    • 2022-08-18
    • US17177785
    • 2021-02-17
    • University of Southampton
    • Christopher HOLMESJanice BARTONDaniel BULL
    • G01B11/16G02B6/124G02B6/13
    • A method of measuring strain comprises providing laminated material comprising two or more ply layers and having a thickness along a direction orthogonal to a plane defined by the ply layers, and comprising a strain sensor embedded between adjacent ply layers, wherein: the strain sensor comprises a first planar optical waveguide and a second planar optical waveguide, each of the first planar optical waveguide and the second planar optical waveguide having a waveguiding core defining an optical propagation direction parallel to the plane of the laminated material and a Bragg grating in the waveguiding core, the optical propagation direction of the first planar optical waveguide being non-parallel to the optical propagation direction of the second planar waveguide; interrogating the Bragg grating of the first planar optical waveguide with transverse electric (TE) polarized light and with transverse magnetic (TM) polarized light to obtain a TE spectral response of the Bragg grating for the TE polarized light and a TM spectral response of the Bragg grating for the TM polarized light; interrogating the Bragg grating of the second planar optical waveguide with TE polarized light and with TM polarized light to obtain a TE spectral response of the Bragg grating for the TE polarized light and a TM spectral response of the Bragg grating for the TM polarized light; and processing the TE spectral response and the TM spectral response of the first planar optical waveguide and the TE spectral response and the TM spectral response of the second planar optical waveguide to extract at least a through-thickness component of strain within the laminated material which is aligned along the direction of the thickness of the laminated material.