会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

一种渣油加氢脱金属催化剂及其制备方法

申请号 CN202011185980.9 申请日 2020-10-29 公开(公告)号 CN114425374B 公开(公告)日 2024-04-05
申请人 中国石油化工股份有限公司; 中石化(大连)石油化工研究院有限公司; 发明人 刘文洁; 隋宝宽; 袁胜华; 王刚;
摘要 本 发明 公开了一种渣油加氢脱金属催化剂及其制备方法,催化剂包括由载体以及担载在载体上的活性组分构成的催化剂本体,在催化剂本体外表面具有一层 碳 膜。碳膜 覆盖 表面活性中心,使得在渣油加氢过程中,防止渣油在催化剂表面活性位剧烈反应后产生的积炭、硫化物及 铁 、 钙 等 沉积物 堵塞催化剂孔道、覆盖活性位,具有良好的抗积炭性能。
权利要求

1.一种渣油加氢脱金属的方法,所述方法采用渣油加氢脱金属催化剂,其特征在于,所述催化剂包括由载体以及担载在载体上的活性组分构成的催化剂本体,在催化剂本体外表面具有一层膜;碳膜的厚度为95μm~200μm,碳膜上具有大孔,碳膜层的孔容为0.9~
3 3
1.4cm/g且不为0.9cm/g,平均孔径为40~69nm且不为40nm。
3
2.根据权利要求1所述的方法,其特征在于,碳膜层的孔容为1.1~1.4cm/g。
3.根据权利要求1所述的方法,其特征在于,碳膜层的平均孔径大于50nm。
4.根据权利要求1所述的方法,其特征在于,所述催化剂的制备方法包括如下步骤:
(1)准备催化剂本体;
(2)将步骤(1)制得的催化剂本体用碳化合物水溶液浸泡,干燥后碳化,在催化剂表面形成碳膜。
5.根据权利要求4所述的方法,其特征在于,步骤(1)中催化剂本体的制备过程包括:
(a)配制活性金属溶液;
(b)将渣油加氢脱金属载体浸渍步骤(a)配制的活性金属溶液,干燥,焙烧制得渣油加氢脱金属催化剂。
6.根据权利要求5所述的方法,其特征在于,步骤(a)中在活性金属溶液中加入添加剂,所述的添加剂是乙二醇、聚乙二醇、丙三醇、黄原胶、胍尔胶、聚乙烯醇中的一种或几种的组合。
7.根据权利要求6所述的方法,其特征在于,添加剂的加入量为0.01g/ml~0.60g/ml。
8.根据权利要求7所述的方法,其特征在于,添加剂的加入量为0.05g/ml~0.30g/ml。
9.根据权利要求4所述的方法,其特征在于,步骤(2)中所述碳水化合物溶液为淀粉或单糖的水溶液,溶液中淀粉和/或单糖的质量百分比为5.0~60.0%。
10.根据权利要求9所述的方法,其特征在于,所述的单糖包括葡萄糖、核糖、果糖、麦芽糖中的一种或几种。
11.根据权利要求4所述的方法,其特征在于,步骤(2)中所述浸泡为浸泡10秒~300秒。
12.根据权利要求11所述的方法,其特征在于,步骤(2)中所述浸泡为浸泡10秒~120秒。
13.根据权利要求4所述的方法,其特征在于,步骤(2)中所述的碳化条件为:在空气中,温度为150~300℃条件下预化2~24小时;然后在氮气气氛下,温度为350~650℃条件下,碳化0.5~10小时,碳化后在催化剂表面形成碳膜。
14.根据权利要求13所述的方法,其特征在于,步骤(2)中所述的碳化条件为:在空气中,温度为180~250℃条件下预氧化2~15小时;然后在氮气气氛下,温度为500~650℃条件下,碳化0.5~10小时。

说明书全文

一种渣油加氢脱金属催化剂及其制备方法

技术领域

[0001] 本发明涉及一种加氢催化剂及其制备方法,具体涉及一种渣油加氢脱金属催化剂及其制备方法。

背景技术

[0002] 随着环保法规的日趋严格以及原油重质化程度加剧,重质油高效转化成为炼油技术发展的一个重要趋势。固定床渣油加氢技术是实现重质油高效转化的一个有效手段。然而,由于渣油粘度大、杂质含量高、分子组成复杂,加氢反应难度较大,要求通过催化反应有效地脱除渣油中金属、硫、氮及残炭等杂质,单一催化剂难以胜任,必须采用不同功能、不同形状及不同尺寸的催化剂匹配装填体系,以达到高活性、长周期运转的工业效果。渣油加氢处理催化剂通常包括保护性催化剂、脱金属催化剂、脱硫催化剂和脱氮催化剂,每种催化剂又兼有其它功能。渣油加氢脱金属催化剂是渣油加氢处理技术中的主要催化剂之一,它的作用是脱除渣油中的Ni、V等金属,同时对脱硫催化剂起保护作用,它不仅要脱除进料中的金属杂质,而且还必须尽可能多容纳这些金属及焦炭等杂质。
[0003] 固定床渣油加氢工艺技术成熟,应用日益广泛,但正是由于前述的催化剂中沉积金属及焦炭等杂质的原因,导致该工艺运转周期较短(约12个月),催化剂失活后装置必须停工更换新催化剂,通常与常减压蒸馏、催化裂化装置等上下游装置运转、检修周期( 2~3年) 不匹配。因此,固定床渣油加氢装置的运转周期对炼油厂整体运转和经济效益影响较大。积炭和金属沉积是造成渣油加氢催化剂失活的主要因素。
[0004] 专利CN109833890A公开了一种渣油加氢催化剂及其制备。包括如下步骤,用含司班表面活性剂有机溶剂喷浸渣油加氢脱金属催化剂载体,然后干燥;用含有聚丙烯酸根的活性金属溶液浸渍干燥后的载体,然后干燥、焙烧制得催化剂。该方法制备的渣油加氢催化剂的金属分散度得到了提高,但是催化剂外表面仍然含有大量的活性金属组分,仍然存在金属沉积和表面结焦的问题,催化剂的生命周期较短。
[0005] 综上,现有技术制备的催化剂均未能有效改善催化剂表面金属沉积的问题,因此开发一种活性金属利用率高,外表面耐金属沉积,使用寿命长的催化剂具有十分重要的意义。

发明内容

[0006] 本发明的第一个目的是提供一种渣油加氢脱金属催化剂,以改善运转过程中催化剂上的金属沉积以及积炭,减少杂质在催化剂外表面上的沉积。本发明另一目的在于提供一种前述催化剂的制备方法。
[0007] 本申请发明人发现现有的渣油加氢脱金属催化剂在加氢过程中,催化剂外表面活性高,易发生加氢反应,生成的金属硫化物堵塞孔口覆盖活性位,同时积炭的沉积也会堵塞孔道覆盖活性位,降低了活性金属的利用率,降低了催化剂的脱除性能,降低了催化剂的容金属能
[0008] 本发明第一方面在于提供一种渣油加氢脱金属催化剂,包括由载体以及担载在载体上的活性组分构成的催化剂本体,在催化剂本体外表面具有一层膜。碳膜的厚度为0.13
μm~500μm,优选1μm~200μm,碳膜上具有大孔,碳膜层的孔容大于0.9cm /g ,优选大于
3 3
1.0cm/g,更优选为1.1~1.4 cm/g。平均孔径大于40nm,优选大于50nm。
[0009] 本发明另一方面在于提供一种渣油加氢脱金属催化剂的制备方法,包括如下步骤:
[0010] (1)准备渣油加氢脱金属催化剂作为催化剂本体;
[0011] (2)将步骤(1)催化剂本体用碳化合物水溶液浸泡,干燥后碳化,在催化剂表面形成碳膜。
[0012] 如上所述,渣油加氢脱金属催化剂即催化剂本体的制备过程包括:
[0013] (a)配制活性金属溶液;
[0014] (b)将渣油加氢脱金属载体浸渍步骤(a)配制的活性金属溶液,干燥,焙烧制得渣油加氢脱金属催化剂;
[0015] 步骤(a)中活性金属溶液优选为钼镍磷活性金属溶液。钼镍磷活性金属溶液中MoO3的含量为4.0~16.0g/100ml,NiO的含量为0.5~4.0g/100ml,磷的含量为0.01~6.0g/100ml。步骤(a)中优选在活性金属溶液中加入添加剂,所述的添加剂可以是乙二醇、聚乙二醇、丙三醇、黄原胶、胍尔胶、聚乙烯醇等其中的一种或几种的组合。添加剂的加入量为
0.01g/ml~0.60g/ml,优选为0.05g/ml~0.30g/ml。
[0016] 步骤(b)中所述的渣油加氢脱金属催化剂载体,其具备脱金属催化剂载体应具有3 2
的大孔结构,载体的孔容为0.85~1.30cm/g,比表面积为90~150m/g。将载体浸渍步骤(a)中配制的活性金属溶液,浸渍方法可以是饱和浸渍,浸渍后,在80~150℃条件下干燥2~12小时,在450~650℃条件下焙烧3~6小时。
[0017] 步骤(2)中所述的碳水化合物溶液优选为淀粉和/或单糖的水溶液,溶液中淀粉和/或单糖的质量百分比为5.0%~60.0%;所述的单糖包括葡萄糖、核糖、果糖、麦芽糖等中的一种或几种。所述的碳水化合物溶液中加入碳酸氢铵作为扩孔剂,碳酸氢铵在溶液中的质量百分比为5.0%~50.0%,所述浸泡为浸泡10秒~300秒,优选为10秒~120秒。
[0018] 步骤(2)中所述的碳化条件为:在空气中,温度为150~300℃,优选180~250℃条件下预化2~24小时,优选2~15小时;然后在氮气气氛下,温度为350~650℃,优选500~650℃条件下,条件下碳化0.5~10小时,碳化后在催化剂表面形成碳膜。
[0019] 本发明的优点是脱金属催化剂外表面不存在活性组分,具体是在脱金属催化剂表面包覆碳膜层,碳膜覆盖表面活性中心,使得在渣油加氢过程中,防止渣油在催化剂表面活性位剧烈反应后产生的积炭、硫化物及沉积物堵塞催化剂孔道、覆盖活性位,具有良好的抗积炭性能。
[0020] 同时由于催化剂外表面为碳膜,积炭沉积不会堵塞孔道,渣油可进入催化剂内部进行加氢反应,提高活性金属的利用率的同时具有良好的抗积炭性能,提高了渣油加氢的脱金属性能和稳定性能,延长了装置运转周期。
[0021] 活性金属溶液中添加添加剂后,活性金属在催化剂本体上呈外略多内略少的分布,进而可以进一步提高活性金属利用率,提高催化剂活性。

具体实施方式

[0022] 下面结合实施例进一步说明本发明方法的作用和效果,但本发明的保护范围并不局限于以下具体实施例。
[0023] 实施例中催化剂的孔容是用压汞法测试得到,比表面积是采用氮气吸脱附法测得。
[0024] 实施例1
[0025] (1)配制120ml 的钼镍磷溶液,其中MoO3的含量为9.0g/100ml,NiO的含量为2.4g/100ml,磷的含量为1.0g/100ml。在钼镍磷溶液加入15g丙三醇,搅拌均匀后浸渍100g渣油加
3 2
氢脱金属催化剂载体,载体的孔容为0.90cm/g,比表面积为117m /g。之后,在100℃条件下干燥5小时,在550℃下焙烧4小时。
[0026] (2)将步骤(1)得到的催化剂在碳酸氢铵的质量百分数为10.0%、淀粉的质量百分数为10.0%的水溶液中浸泡45秒后取出,在210℃条件下,空气中旋转预氧化4小时,在氮气气氛下在600℃下碳化6小时,即得所述渣油加氢脱金属催化剂A。
[0027] 实施例2
[0028] 步骤(1)同实施例1,只是步骤(1)中在钼镍磷溶液加入15g聚乙二醇代替丙三醇。
[0029] (2)将步骤(1)得到的催化剂在淀粉的质量百分数为30.0%的水溶液中浸泡20秒后取出,在180℃条件下,空气中旋转预氧化8小时,在氮气气氛下在550℃下碳化8小时后,最终制得渣油加氢脱金属催化剂B。
[0030] 实施例3
[0031] 同实施例1,只是在步骤(2)中在质量百分数为30%的果糖水溶液中浸泡20秒后取出,在230℃条件下,空气中旋转预氧化10小时,在氮气气氛下在580℃下碳化7小时后,最终制得渣油加氢脱金属催化剂C。
[0032] 实施例4
[0033] 同实施例1,只是在步骤(2)中催化剂在葡萄糖的质量百分数为20%的水溶液浸泡45秒后取出,最终制得所述渣油加氢脱金属催化剂D。
[0034] 实施例5
[0035] 同实施例1,只是在步骤(1)中在钼镍磷溶液加入15g聚乙二醇,步骤(2)中催化剂在葡萄糖的质量百分数为20%的水溶液浸泡60秒,最终制得所述渣油加氢脱金属催化剂E。
[0036] 实施例6
[0037] 同实施例1,区别仅在于钼镍磷溶液中未加入丙三醇。最终制得渣油加氢脱金属催化剂F。
[0038] 实施例7
[0039] 同实施例1,区别仅在于步骤(2)中碳化过程为不经过预氧化,直接在氮气气氛下在600℃下碳化6小时,最终制得渣油加氢脱金属催化剂G。
[0040] 对比例1
[0041] 配制120ml 的钼镍磷溶液,其中MoO3的含量为9.0g/100ml,NiO的含量为2.4g/100ml,磷的含量为1.0g/100ml。浸渍100g渣油加氢脱金属催化剂载体,在100℃条件下干燥
5小时,在550℃焙烧4小时,即得渣油加氢脱金属催化剂H。
[0042] 催化剂的物化性质列于表1中。
[0043] 表1 加氢催化剂的物化性质
[0044] 催化剂 A B C D E F G H碳膜厚度,μm 96 146 143 128 133 95 95 ‑
3
碳膜层的孔容,cm/g 1.15 1.14 1.15 1.18 1.19 1.15 0.95 ‑
碳膜层平均孔径,nm 69 58 57 63 62 68 41 ‑
[0045] 在200ml固定床加氢试验装置上对催化剂A、F、G和催化剂H进行活性稳定性评价,原料油性质列于表2中,实验条件 列于表3中,实验结果列于表4中。
[0046] 表2 原料油性质
[0047]原料油性质 中东常渣
S,w% 4.0
Ni,μg/g 33.2
V,μg/g 97.6
[0048] 表3评价实验工艺条件
[0049]反应温度,℃ 385
反应压力,MPa 15.5
‑1
体积空速,h 1.0
氢油比,V/V 650
[0050] 表4 催化剂的脱金属率评价结果(%)
[0051]运转时间,h 催化剂B 催化剂F 催化剂G 催化剂H
100 69.3 68.7 68.5 68.1
500 68.4 67.5 66.5 63.3
1000 67.9 66.8 65.3 61.7
1500 66.8 65.6 64.1 61.3
2000 66.1 65.0 63.5 61.0
[0052] 由以上结果可以看出,本发明制备的加氢脱金属催化剂具有比对比剂更优的脱金属性能,并具有良好的稳定性,为延长装置运转周期提供了保障。