会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

心室辅助装置

申请号 CN202210847103.6 申请日 2021-04-06 公开(公告)号 CN115337532A 公开(公告)日 2022-11-15
申请人 马真塔医药有限公司; 发明人 约西·图沃; 因农·以利沙; 大卫·伊兹雷利; 加德·鲁宾斯基; 维克多·特洛申; 沙乌勒·穆斯塔奇; 尤瓦尔·齐波里; 阿维·罗森菲尔德; 奥雷利·贝纳迪; 吉拉德·莫伊谢耶夫; 尤里·苏丁;
摘要 本 申请 涉及 心室辅助装置 。描述了包括 叶轮 (50)的设备和方法,叶轮包括近侧衬套(64)和远侧衬套(58)。两个或更多个螺旋形长形元件(52)从近侧衬套(64)延伸到远侧衬套(58),并且轴向结构(54)设置在两个或更多个螺旋形长形元件(52)内侧,并沿着螺旋形长形元件(52)围绕其缠绕的轴线。叶轮(50)包括防止叶轮过度扩展元件(72)。防止叶轮过度扩展元件是单个集成结构,包括围绕轴向结构(54)设置的环(73),和多个长形元件(67),每个长形元件(67)从环延伸到相应的螺旋形长形元件(52),并联接到相应的螺旋形长形元件(52),以防止叶轮(50)的径向扩展。还描述了其他应用。
权利要求

1.一种方法,包括:
通过以下步骤制造叶轮
形成结构,所述结构在所述结构的近侧端部和远侧端部处具有第一衬套和第二衬套,所述第一衬套和所述第二衬套通过至少一个长形元件彼此连接;
至少部分地通过轴向压缩所述结构,使所述至少一个长形元件径向扩展并且形成至少一个螺旋形长形元件;
用联接剂涂覆所述至少一个螺旋形长形元件,所述联接剂被配置为增强所述螺旋形长形元件与弹性体层之间的结合;
用所述弹性体层涂覆被涂覆的螺旋形长形元件;以及
随后,将弹性体膜联接到所述至少一个螺旋形长形元件使得带有与其联接的所述弹性体膜的所述至少一个螺旋形长形元件限定所述叶轮的叶片
2.根据权利要求1所述的方法,其中,将所述弹性体膜联接到所述至少一个螺旋形长形元件使得带有与其联接的所述弹性体膜的所述至少一个螺旋形长形元件限定所述叶轮的叶片包括将所述螺旋形长形元件浸入弹性体材料中,所述弹性体膜由所述弹性体材料制成。
3.根据权利要求1或权利要求2所述的方法,其中,所述弹性体膜包括具有超过300%的极限伸长率的弹性材料。
4.根据权利要求1‑3中任一项所述的方法,其中,所述弹性体膜包括具有至少为4的熔体流动指数的弹性材料。
5.根据权利要求1‑4中任一项所述的方法,其中,所述弹性体膜包括具有大于6000psi的极限拉伸强度的弹性材料。
6.根据权利要求1‑5中任一项所述的方法,其中,用所述联接剂涂覆所述至少一个螺旋形长形元件包括用烷化合物涂覆所述至少一个螺旋形长形元件,所述硅烷化合物含有第一官能团和第二官能团,所述第一官能团被配置为与所述螺旋形长形元件结合,所述第二官能团被配置为与所述弹性体层结合。
7.根据权利要求1‑6中任一项所述的方法,其中,所述弹性体层由给定的弹性体材料制成,并且其中,所述弹性体膜由所述给定的弹性体材料制成。
8.根据权利要求1‑6中任一项所述的方法,其中,所述弹性体层由第一弹性体材料制成,并且其中,所述弹性体膜由不同于所述第一弹性体材料的第二弹性体材料制成。
9.根据权利要求1‑8中任一项所述的方法,其中,用所述弹性体层涂覆所述被涂覆的螺旋形长形元件包括将弹性体喷涂到所述被涂覆的螺旋形长形元件上。
10.根据权利要求1‑9中任一项所述的方法,其中,用所述弹性体层涂覆所述被涂覆的螺旋形长形元件包括至少部分地使所述被涂覆的螺旋形长形元件变圆。
11.根据权利要求1‑10中任一项所述的方法,其中,用所述弹性体层涂覆所述被涂覆的螺旋形长形元件包括在用所述联接剂涂覆所述至少一个螺旋形长形元件的给定时间段内用所述弹性体层涂覆所述被涂覆的螺旋形长形元件。
12.根据权利要求11所述的方法,其中,用所述弹性体层涂覆所述被涂覆的螺旋形长形元件还包括在用所述联接剂涂覆所述至少一个螺旋形长形元件的所述给定时间段内用所述弹性体层涂覆所述被涂覆的螺旋形长形元件之后,将附加的弹性体材料喷涂到所述被涂覆的螺旋形长形元件上。

说明书全文

心室辅助装置

[0001] 本申请是申请日为2021年04月06日、申请号为202180006817.8、发明名称为“心室辅助装置”的申请的分案申请。
[0002] 相关申请的交叉引用
[0003] 本申请要求以下申请的优先权:
[0004] Tuval于2020年4月7日提交的题为“Ventricular assist device(心室辅助装置)”的美国临时专利申请63/006,122;
[0005] Tuval于2020年11月16日提交的题为“Ventricular assist device(心室辅助装置)”的美国临时专利申请63/114,136;和
[0006] Tuval于2020年12月23日提交的题为“Ventricular assist device(心室辅助装置)”的美国临时专利申请63/129,983。
[0007] 上面引用的美国临时申请中的每一个都通过引用并入本文。
[0008] 本发明的实施例的领域
[0009] 本发明的一些应用总体上涉及医疗设备。具体地,本发明的一些应用涉及心室辅助装置及其使用方法。
[0010] 背景
[0011] 心室辅助装置是机械循环支持装置,其被设计为辅助心腔并卸载心腔负荷,以维持或增加心输出量。它们用于患有心衰竭的患者和用于在经皮冠状动脉介入治疗期间有心脏功能恶化险的患者。最常见的是,左心室辅助装置应用于有缺陷的心脏,以辅助左心室功能。在一些情况下,使用右心室辅助装置以辅助右心室功能。这种辅助装置或被设计成永久植入,或被安装在导管上以便临时放置。
[0012] 实施例的概述
[0013] 根据本发明的一些应用,血包括叶轮。叶轮包括近侧衬套和远侧衬套,以及从近侧衬套延伸到远侧衬套的两个或更多个螺旋形长形元件(并且典型地是三个螺旋形长形元件)。轴向结构(例如,柱形轴向结构,例如弹簧)设置在两个或更多个螺旋形长形元件内侧,并沿着螺旋形长形元件绕其缠绕的轴线设置。材料的膜支撑在螺旋形长形元件和轴向结构之间,使得带有与其联接的材料的膜的螺旋形长形元件中的每一个限定叶轮的相应叶片。防止叶轮过度扩展元件设置在叶轮内。防止叶轮过度扩展元件是单个集成结构,该单个集成结构包括围绕轴向结构设置的环和多个长形元件。每一个长形元件从环延伸到相应的螺旋形长形元件,并联接到相应的螺旋形长形元件,以防止叶轮的径向扩展。典型地,长形元件被配置为不抵抗压缩,并且长形元件被配置为通过向螺旋形长形元件施加拉力来防止叶轮径向扩展。
[0014] 对于一些应用,沿着叶轮的长度的至少一部分,随着材料的膜从一个叶轮叶片过渡到相邻叶片,材料的膜形成连续的U形曲面,其中材料的膜的U形曲率在轴向结构处基本上不中断。对于一些应用,当从叶轮的远侧端部观察时,叶轮的每个叶片的压力侧(即,被配置为在叶轮运行期间推压血液的侧)在叶轮的远侧区域中是凸的,并且在叶轮的近侧区域中是凹的。典型地,叶轮的每个叶片的压力侧转变成在叶轮叶片内的长形元件的区域中基本上径向定向。
[0015] 对于一些应用,叶轮通过以下步骤被制造:形成结构,该结构在该结构的近侧端部和远侧端部处具有第一衬套和第二衬套,第一衬套和第二衬套通过至少一个长形元件彼此连接。至少部分地通过轴向压缩该结构而使至少一个长形元件径向扩展并且形成至少一个螺旋形长形元件。用联接剂涂覆至少一个螺旋形长形元件,联接剂被配置为增强螺旋形长形元件与弹性体层之间的结合。然后用弹性体层涂覆该被涂覆的螺旋形长形元件。随后,将弹性体膜联接到至少一个螺旋形长形元件,使得带有与其联接的弹性体膜的至少一个螺旋形长形元件限定叶轮的叶片。例如,螺旋形长形元件可以浸入弹性体材料中,弹性体层由该弹性体材料制成。对于一些应用,弹性体膜包括弹性材料,该弹性材料具有大于300%的极限伸长率,具有至少为4的熔体流动指数,和/或具有大于6000psi的极限拉伸强度。
[0016] 对于一些应用,叶轮由驱动一个或更多个从动磁体旋转的一个或更多个驱动磁体(该驱动磁体联接到达)驱动旋转,并且从动磁体经由驱动线缆联接到叶轮。根据本发明的一些应用,测量一个或更多个从动磁体和一个或更多个驱动磁体之间的磁相位差,并且至少部分响应于该测量的磁相位差来确定受试者的生理参数。例如,至少部分地基于相位差中的变化,计算机处理器可以确定受试者的左心室压力与受试者的主动脉压力之间的差、受试者的左心室压力、受试者的心动周期中的事件、受试者的心脏后负荷和/或不同的生理参数。对于一些应用,生理参数是基于相位差测量结果与一个或更多个附加测量结果(例如磁通振幅测量结果、马达消耗的功率和/或马达消耗的电流)相结合来确定的。典型地,这样的测量结果被组合在数学模型中,例如线性回归模型,和/或空间状态模型。
[0017] 对于本发明的一些应用,在用作血泵的心室辅助装置的运行期间,测量受试者的动脉搏动,并从受试者的动脉搏动导出参数。典型地,随着叶轮的旋转速率增加,由血泵产生的流量增加。典型地,由血泵产生的流动是非搏动的,因为血泵是连续流动式血泵而不是搏动血泵。因此,典型的情况是,叶轮的旋转速率增加并且由血泵产生的流量增加,受试者的动脉搏动降低。对于一些应用,受试者的动脉搏动是随着叶轮旋转速率的变化而测量的。基于上述测量结果,导出动脉搏动与叶轮旋转速率和/或泵流量(pump flow rate)之间的关系。对于一些应用,基于上述关系,导出受试者的自然心输出量。对于一些这样的应用,当受试者的动脉搏动达到零时,受试者的动脉搏动和泵流量之间的关系被外推以确定泵流量将是多少。假设,在这个值,血泵正在取代心脏的固有功能,并且泵在这个值所产生的流量提供了受试者的自然心输出量的近似值。
[0018] 因此,根据本发明的一些应用,提供一种设备,该设备包括:
[0019] 血泵,该血泵被配置为放置在受试者身体内,该血泵包括:
[0020] 叶轮,叶轮包括:
[0021] 近侧衬套和远侧衬套;
[0022] 两个或更多个螺旋形长形元件,螺旋形长形元件从近侧衬套延伸到远侧衬套;
[0023] 轴向结构,轴向结构设置在两个或更多个螺旋形长形元件内侧,并且沿着螺旋形长形元件围绕其缠绕的轴线设置;和
[0024] 材料的膜,该材料的膜被支撑在螺旋形长形元件和轴向结构之间,使得带有与其联接的材料的膜的螺旋形长形元件中的每一个限定叶轮的相应叶片;以及
[0025] 防止叶轮过度扩展元件,防止叶轮过度扩展元件是单个集成结构,该单个集成结构包括环和多个长形元件,该环围绕轴向结构设置,
[0026] 每一个长形元件从环延伸到相应的螺旋形长形元件,并联接到相应的螺旋形长形元件,以防止叶轮的径向扩展。
[0027] 在一些应用中,叶轮包括三个螺旋形长形元件,使得带有与其联接的材料的膜的三个螺旋形长形元件限定叶轮的三个叶片,并且相应的长形元件从环延伸到该三个螺旋形长形元件中的每一个,使得在叶轮的三个叶片中的每一个内存在相应的长形元件。
[0028] 在一些应用中,长形元件被配置为不抵抗压缩,并且长形元件被配置为通过向螺旋形长形元件施加拉力来防止叶轮径向扩展。
[0029] 在一些应用中,沿着叶轮的长度的至少一部分,随着材料的膜从一个叶轮叶片过渡到相邻叶片,材料的膜形成连续的U形曲面,其中材料的膜的U形曲率在轴向结构处基本上不中断。
[0030] 在一些应用中,当从叶轮的远侧端部观察时,叶轮的每个叶片的压力侧(该压力侧被配置为在叶轮运行期间推压血液)在叶轮的远侧区域中是凸的,并且在叶轮的近侧区域中是凹的。在一些应用中,叶轮的每个叶片的压力侧转变成在叶轮叶片内的长形元件的区域中基本上径向定向。
[0031] 在一些应用中,螺旋形长形元件涂覆有联接剂,联接剂被配置为增强螺旋形长形元件和材料的膜之间的结合。在一些应用中,材料的膜包括弹性体材料,并且联接剂包括至少两个官能团,该至少两个官能团被配置为分别与螺旋形长形元件和弹性体材料结合。在一些应用中,联接剂包括烷化合物。
[0032] 在一些应用中,该设备还包括设置在材料的膜和联接剂之间的弹性体的层。在一些应用中,弹性体的层被配置为使螺旋形长形元件变圆。在一些应用中,材料的膜由弹性体制成。在一些应用中,弹性体包括聚酸酯基热塑性聚酯。
[0033] 在一些应用中,轴向结构包括弹簧。在一些应用中,弹簧包括在沿着弹簧的长度的中间位置处的管,并且环围绕该管设置。
[0034] 因此,根据本发明的一些应用,提供了一种方法,该方法包括:
[0035] 通过以下步骤制造叶轮:
[0036] 形成结构,该结构在该结构的近侧端部和远侧端部处具有第一衬套和第二衬套,该第一衬套和该第二衬套通过至少一个长形元件彼此连接;
[0037] 至少部分地通过轴向压缩该结构,使该至少一个长形元件径向扩展并且形成至少一个螺旋形长形元件;
[0038] 用联接剂涂覆至少一个螺旋形长形元件,联接剂被配置为增强螺旋形长形元件与弹性体层之间的结合;
[0039] 用弹性体层涂覆被涂覆的螺旋形长形元件;以及
[0040] 随后,将弹性体膜联接到至少一个螺旋形长形元件,使得带有与其联接的弹性体膜的至少一个螺旋形长形元件限定叶轮的叶片。
[0041] 在一些应用中,将弹性体膜联接到至少一个螺旋形长形元件使得带有与其联接的弹性体膜的至少一个螺旋形长形元件限定叶轮的叶片包括将螺旋形长形元件浸入弹性体材料中,弹性体膜由该弹性体材料制成。
[0042] 在一些应用中,弹性体膜包括具有超过300%的极限伸长率的弹性材料。在一些应用中,弹性体膜包括具有熔体流动指数至少为4的弹性材料。在一些应用中,弹性体膜包括具有大于6000psi的极限拉伸强度的弹性材料。
[0043] 在一些应用中,用联接剂涂覆至少一个螺旋形长形元件包括用硅烷化合物涂覆至少一个螺旋形长形元件,硅烷化合物含有第一官能团和第二官能团,第一官能团被配置为与螺旋形长形元件结合,第二官能团被配置为与弹性体层结合。
[0044] 在一些应用中,弹性体层由给定的弹性体材料制成,并且弹性体膜由给定的弹性体材料制成。在一些应用中,弹性体层由第一弹性体材料制成,并且弹性体膜由不同于第一弹性体材料的第二弹性体材料制成。
[0045] 在一些应用中,用弹性体层涂覆被涂覆的螺旋形长形元件包括将弹性体喷涂到被涂覆的螺旋形长形元件上。在一些应用中,用所述弹性体层涂覆被涂覆的螺旋形长形元件包括至少部分地使被涂覆的螺旋形长形元件变圆。
[0046] 在一些应用中,用弹性体层涂覆被涂覆的螺旋形长形元件包括在用联接剂涂覆至少一个螺旋形长形元件的给定时间段内用弹性体层涂覆被涂覆的螺旋形长形元件。在一些应用中,用弹性体层涂覆被涂覆的螺旋形长形元件还包括在用联接剂涂覆至少一个螺旋形长形元件的给定时间段用弹性体层涂覆被涂覆的螺旋形长形元件之后,将附加的弹性体材料喷涂到被涂覆的螺旋形长形元件上。
[0047] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0048] 心室辅助装置,该心室辅助装置包括:
[0049] 叶轮,该叶轮被配置为放置在受试者的左心室内;
[0050] 马达;
[0051] 至少一个驱动磁体,该至少一个驱动磁体联接到马达并被配置为被马达旋转;
[0052] 至少一个从动磁体,该至少一个从动磁体磁耦合到驱动磁体并被配置为被驱动磁体旋转;
[0053] 驱动线缆,该驱动线缆从该从动磁体延伸并被配置为将旋转运动从该从动磁体传递到叶轮;
[0054] 一组传感器,该一组传感器被配置为检测从动磁体和驱动磁体之间的磁相位差;以及
[0055] 计算机处理器,该计算机处理器被配置为接收检测到的磁相位差并至少部分响应于检测到的磁相位差来确定受试者的生理参数。
[0056] 在一些应用中,该一组传感器还被配置为测量磁通振幅信号,并且,计算机处理器被配置为至少部分地基于磁通振幅信号和检测到的磁相位差的组合来确定受试者的生理参数。
[0057] 在一些应用中,计算机处理器被配置为至少部分地响应于从动磁体和驱动磁体之间的磁相位差来确定受试者的左心室和受试者的主动脉之间的压差。在一些应用中,计算机处理器被配置为至少部分地响应于从动磁体和驱动磁体之间的磁相位差来确定受试者的左心室压力。在一些应用中,计算机处理器被配置为至少部分地响应于从动磁体和驱动磁体之间的磁相位差来确定受试者的心动周期中的事件。
[0058] 在一些应用中,该一组传感器包括第一磁力计和第二磁力计,第一磁力计被配置为测量从动磁体的磁相位,第二磁力计被配置为测量从动磁体的磁相位。在一些应用中,第二磁力计被配置为通过测量马达的磁相位来测量从动磁体的磁相位。
[0059] 在一些应用中,计算机处理器被配置为接收指示马达的电流消耗的信号,并且被配置为至少部分地基于马达的电流消耗和检测到的磁相位差的组合来确定受试者的生理参数。在一些应用中,该一组传感器还被配置为测量磁通振幅信号,并且计算机处理器被配置为至少部分地基于马达的电流消耗、磁通振幅信号和检测到的磁相位差的组合来确定受试者的生理参数。
[0060] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0061] 心室辅助装置,该心室辅助装置包括叶轮,该叶轮被配置为放置在受试者的左心室内,并且被配置为将血液从受试者的左心室泵送到受试者的主动脉;
[0062] 血压传感器,该血压传感器被配置为测量受试者的主动脉压力;
[0063] 计算机处理器,该计算机处理器被配置为:
[0064] 基于测量的主动脉压力导出受试者的动脉搏动;和
[0065] 至少部分地基于动脉搏动估计受试者的自然心输出量。
[0066] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0067] 左心室辅助装置,该左心室辅助装置被配置为辅助受试者的左心室功能,该左心室辅助装置包括:
[0068] 叶轮;
[0069] 框架,该框架围绕叶轮设置,
[0070] 刚性轴向轴杆,该刚性轴向轴杆从框架的近侧端部延伸到框架的远侧端部,叶轮联接到刚性轴向轴杆,并且刚性轴向轴杆包括近侧部分和远侧部分,该近侧部分和远侧部分经由接头彼此联接,近侧部分和远侧部分被配置为经由接头相对于彼此弯曲。
[0071] 对于一些应用,框架所具有的长度超过25mm。
[0072] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0073] 叶轮,该叶轮包括:
[0074] 近侧衬套和远侧衬套;
[0075] 多个螺旋形长形元件;
[0076] 轴向结构,该轴向结构设置在螺旋形长形元件内侧,并且沿着螺旋形长形元件围绕其缠绕的轴线设置;以及
[0077] 弹性体材料的膜,该弹性体材料的膜被支撑在螺旋形长形元件和轴向结构之间,使得带有与其联接的弹性体材料的膜的每个螺旋形长形元件限定叶轮的相应叶片,[0078] 沿着叶轮的长度的至少一部分,随着弹性体材料的膜从一个叶轮叶片过渡到相邻叶片,弹性体膜形成连续的U形曲率,其中弹性体材料的膜的U形曲率在轴向结构处基本上不中断。
[0079] 在一些应用中,轴向结构包括柱形轴向结构。在一些应用中,柱形轴向结构包括弹簧。
[0080] 根据本发明的一些应用,还提供了一种方法,该方法包括:
[0081] 将心室辅助装置通过动脉切口插入并经由导入器鞘插入受试者的血管系统中,该心室辅助装置包括递送导管、驱动线缆和围绕所述驱动线缆的外管;
[0082] 当心室辅助装置仍在受试者的血管系统内时,移除导入器鞘;和
[0083] 使用设置在外管和递送导管之间的无菌套筒,保持动脉切口的无菌,同时允许外管相对于递送导管运动。
[0084] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0085] 血泵,该血泵包括:
[0086] 轴向轴杆;
[0087] 叶轮,该叶轮设置在轴向轴杆上;
[0088] 马达单元,马达单元包括马达,马达被配置为通过在给定的旋转方向上旋转叶轮来驱动叶轮以将血液从叶轮的远侧端部泵送到叶轮的近侧端部;
[0089] 驱动线缆,该驱动线缆被配置为从马达单元延伸到轴向轴杆,该驱动线缆被配置为通过旋转将旋转运动从马达传递到叶轮,
[0090] 驱动线缆的至少一部分包括两层或更多层,每层包括多根线,
[0091] 两层或更多层中的每一层的多根线被设置成盘绕构型,盘绕构型使得响应于驱动线缆在给定旋转方向上旋转,每一层的线至少部分地退绕,使得驱动线缆的该部分轴向缩短,以及
[0092] 驱动线缆保持在预紧状态,使得即使当叶轮处于静止状态时,驱动线缆也相对于其静止状态被拉伸。
[0093] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0094] 血泵,该血泵包括:
[0095] 轴向轴杆;
[0096] 叶轮,该叶轮设置在轴向轴杆上;
[0097] 马达单元,该马达单元包括马达,马达被配置为驱动叶轮,以便通过当从叶轮的近侧端部向叶轮的远侧端部观察时在逆时针方向上旋转叶轮来将血液从叶轮的远侧端部泵送到叶轮的近侧端部;
[0098] 驱动线缆,该驱动线缆被配置为从马达单元延伸到轴向轴杆,该驱动线缆被配置为通过旋转将旋转运动从马达传递到叶轮,
[0099] 驱动线缆的至少一部分包括两层或更多层,每层包括多根线,
[0100] 两层或更多层中的每一层的多根线被设置为左手放置盘绕构型。
[0101] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0102] 血泵,该血泵包括:
[0103] 轴向轴杆;
[0104] 叶轮,该叶轮设置在轴向轴杆上;
[0105] 马达单元,该马达单元包括马达,马达被配置为驱动叶轮,以便通过当从叶轮的近侧端部向叶轮的远侧端部观察时在顺时针方向上旋转叶轮来将血液从叶轮的远侧端部泵送到叶轮的近侧端部;
[0106] 驱动线缆,该驱动线缆被配置为从马达单元延伸到轴向轴杆,该驱动线缆被配置为通过旋转将旋转运动从马达传递到叶轮,
[0107] 驱动线缆的至少一部分包括两层或更多层,每层包括多根线,
[0108] 两层或更多层中的每一层的多根线被设置为右手放置盘绕构型。
[0109] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0110] 血泵,该血泵包括:
[0111] 轴向轴杆;
[0112] 叶轮,该叶轮设置在轴向轴杆上;
[0113] 马达单元,该马达单元包括马达,马达被配置为驱动叶轮,以便通过在给定的旋转方向上旋转叶轮来将血液从叶轮的远侧端部泵送到叶轮的近侧端部;
[0114] 驱动线缆,该驱动线缆被配置为从马达单元延伸到轴向轴杆,该驱动线缆被配置为通过旋转将旋转运动从马达传递到叶轮,
[0115] 驱动线缆的至少一部分包括彼此同轴的内层和外层,并且每一层包括设置成盘绕构型的多根线,
[0116] 外层内的线数量与内层内的线数量之比在2:3至2:5之间,并且外层内的线的直径与内层内的线的直径之比在3:2至5:2之间。
[0117] 根据本发明的一些应用,还提供一种设备,该设备包括:
[0118] 血泵,该血泵包括:
[0119] 轴向轴杆;
[0120] 叶轮,该叶轮设置在轴向轴杆上;
[0121] 马达单元,该马达单元包括马达,马达被配置为驱动叶轮,以便通过在给定的旋转方向上旋转叶轮来将血液从叶轮的远侧端部泵送到叶轮的近侧端部;
[0122] 驱动线缆,该驱动线缆被配置为从马达单元延伸到轴向轴杆,该驱动线缆被配置为通过旋转将旋转运动从马达传递到叶轮;以及
[0123] 驱动线缆支承管,驱动线缆被配置为在驱动线缆支承管中旋转,驱动线缆支承管的至少一部分包括:
[0124] 内层和外层,内层和外层包括彼此不同的相应材料;和
[0125] 嵌入在内层和外层之间的盘绕线,盘绕线被配置为即使在驱动线缆支承管经历实质弯曲的区域内也保持驱动线缆支承管的基本上圆形截面。
[0126] 一般而言,在本申请的说明书权利要求书中,当相对于装置或其一部分使用术语“近侧”和相关术语时,术语“近侧”和相关术语应被解释为意指当装置或其一部分被插入受试者身体内时,装置或其一部分的端部通常离装置通过其被插入受试者身体内的位置较近。当相对于装置或其一部分使用术语“远侧”和相关术语时,术语“远侧”和相关术语应被解释为意指当装置或其一部分被插入受试者身体内时,装置或其一部分的端部通常离装置通过其被插入受试者身体内的位置较远。
[0127] 本发明的范围包括在除左心室和主动脉之外的解剖位置中使用本文所描述的设备和方法。因此,心室辅助装置和/或其部分有时在本文中(在说明书和权利要求书中)被称为血泵。
[0128] 根据结合附图进行的本发明的实施例的以下详细描述,本发明将被更完全地理解,在附图中:

附图说明

[0129] 图1A、图1B、图1C和图1D是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置的远侧端部被配置为放置在受试者的左心室中;
[0130] 图1E和图1F是根据本发明的一些应用的在远侧区域中包括编织结构和/或网状物的心室辅助装置的示意图,编织结构和/或网状物被配置为将心室辅助装置的血液入口开口与心室的内部结构分开;
[0131] 图2是根据本发明的一些应用的容纳心室辅助装置的叶轮的框架的示意图;
[0132] 图3A、图3B、图3C、图3D、图3E和图3F是根据本发明的一些应用的心室辅助装置的叶轮或其部分的示意图;
[0133] 图3Gi和图3Gii是根据本发明的一些应用的心室辅助装置的叶轮的图片;
[0134] 图4是根据本发明的一些应用的被设置在心室辅助装置的框架内侧的叶轮的示意图;
[0135] 图5A和图5B是根据本发明的一些应用的分别处于非径向约束状态和径向约束状态的心室辅助装置的叶轮和框架的示意图;
[0136] 图6A和图6B是根据本发明的一些应用的在心室辅助装置的叶轮相对于心室辅助装置的框架处于运动周期的各个阶段的心室辅助装置的示意图;
[0137] 图6C是根据本发明的一些应用的心室辅助装置的远侧末端元件的示意图,该远侧末端元件包括轴向轴杆接收管和远侧末端部分;
[0138] 图6D和6E是根据本发明的一些应用的用于联接到叶轮衬套的联接元件的示意图,该联接元件向近侧延伸并用作止动件;
[0139] 图7A是根据本发明的一些应用的心室辅助装置的马达单元的示意图;
[0140] 图7Bi和图7Bii是根据本发明的一些应用的心室辅助装置的马达单元的示意图;
[0141] 图8A是表示如在实验中测量的心室辅助装置的驱动线缆的长度随着血泵叶轮所对抗的压力梯度的变化而变化的图表;
[0142] 图8B和图8C是如在实验中测量的表示在血泵上执行的磁相位测量结果随着血泵的叶轮所对抗的压力梯度变化而变化的图表;
[0143] 图9A、图9B、图9C、图9D、图9E、图9F和图9G是根据本发明的一些应用的被配置为将马达单元支撑在患者腿上的马达单元支撑件的示意图;
[0144] 图10A、图10B和图10C是根据本发明的一些应用的心室辅助装置的驱动线缆的示意图;
[0145] 图10D是根据本发明的一些应用的驱动线缆支承管的示意图;
[0146] 图11A、图11B、图11C、图11D和图11E是根据本发明的一些应用的用于清洗心室辅助装置的驱动线缆、径向支承件和/或叶轮衬套的设备和方法的示意图;
[0147] 图12A和图12B是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置包括位于容纳叶轮的框架内侧上的内衬
[0148] 图13是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置具有容纳叶轮的框架,该框架限定柱形部分,该柱形部分的至少远侧部分未被覆盖
[0149] 图14是根据本发明的一些应用的被放置在受试者的左心室内的心室辅助装置的示意图,其中示出了左心室的横截面视图;
[0150] 图15A、图15B、图15C和图15D是根据本发明的一些应用的心室辅助装置的远侧末端元件的示意图,该远侧末端元件至少部分地弯曲,从而限定问号形状或网球拍形状;
[0151] 图16A和图16B是根据本发明的一些应用的图15D的心室辅助装置的示意图,该心室辅助装置被设置在受试者的左心室内;
[0152] 图17Ai和图17Aii是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置具有设置在其远侧末端部分上的球囊,该球囊被配置为促进轴向轴杆相对于心室的壁的运动;
[0153] 图17Bi和图17Bii是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置具有接头,该接头被配置为促进心室辅助装置的远侧末端部分相对于心室辅助装置的轴向轴杆枢转;
[0154] 图17C是根据本发明的一些应用的心室辅助装置的示意图,心室辅助装置的外管成形为预定曲率,使得当轴向轴杆设置在受试者的左心室内时,心室辅助装置的轴向轴杆保持为基本上平直的构型;
[0155] 图17D是心室辅助装置的示意图,心室辅助装置具有被配置为锚定到左心室心尖的组织的远侧末端;
[0156] 图18A、图18B和图18C是根据本发明的相应应用的心室辅助装置的远侧径向支承件的示意图;
[0157] 图19A、图19B、图19C、图19D和图19E是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置包括泵出口管,泵出口管被配置为当血液被通过泵出口管泵送时变得弯曲,泵出口管相对于心室辅助装置的远侧末端部分是可旋转的;
[0158] 图19F是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置包括弯曲元件,该弯曲元件由形状记忆材料制成并且被配置为向心室辅助装置的一部分提供预定曲率,该弯曲元件相对于心室辅助装置的远侧末端部分是可旋转的;
[0159] 图20A、图20B和图20C是根据本发明的一些应用的心室辅助装置的示意图,该心室辅助装置的轴向轴杆包括接头,例如万向接头;
[0160] 图21是根据本发明的一些应用的包括一个或更多个血压测量管的心室辅助装置的示意图;
[0161] 图22A和图22B是根据本发明的一些应用的无菌套筒的示意图,该无菌套筒被配置为在递送导管与心室辅助装置的外管之间形成密封;
[0162] 图23A、图23B和图23C是根据本发明的一些应用的末端矫直器的示意图,末端矫直器用于在将导引线插入心室辅助装置的远侧末端时将远侧末端矫直;以及
[0163] 图24A、图24B和图24C是示出根据本发明的一些应用的在使用左心室辅助装置期间执行的测量结果的图表。
[0164] 实施例的详细描述
[0165] 现在参考图1A、图1B和图1C,这些图是根据本发明的一些应用的心室辅助装置20的示意图,心室辅助装置的远侧端部被配置为设置在受试者的左心室22中。图1A示出了包括控制台21和马达单元23的心室辅助装置系统的概述。(如下文所述,典型地,马达单元是容纳马达的手柄。)图1B示出了插入受试者左心室的心室辅助装置,并且图1C更详细地示出了心室辅助装置的泵部分27。心室辅助装置包括泵出口管24,该泵出口管穿过受试者的主动脉瓣26,使得泵出口管的近侧端部28被设置在受试者的主动脉30中,并且泵出口管的远侧端部32被设置在左心室22内。泵出口管24典型地是长形管,典型地,泵出口管的轴向长度基本上大于其直径。本发明的范围包括在除左心室和主动脉之外的解剖位置中使用本文所描述的设备和方法。因此,心室辅助装置和/或其部分有时在本文中(在说明书和权利要求书中)被称为血泵。
[0166] 对于一些应用,心室辅助装置用于在经皮冠状动脉介入治疗期间辅助受试者的左心室的功能。在这种情况下,心室辅助装置典型地被使用长达10小时(例如,长达6小时)的时间段,在此期间有发生血液动力学不稳定的风险(例如,在经皮冠状动脉介入治疗期间或紧接着经皮冠状动脉介入治疗之后)。可替代地或附加地,心室辅助装置用于在患有心源性休克的患者身上辅助受试者的左心室的功能更长时间段(举例来说,例如,2天‑20天,例如,4天‑14天),心源性休克可以包括任何低心输出量状态(例如,急性心肌梗塞、心肌炎、心肌病、产后等)。对于一些应用,心室辅助装置用于辅助受试者的左心室的功能甚至更长的时间段(例如,几周或几个月),例如,在“心功能恢复(bridge to recovery)”治疗中。对于一些这样的应用,心室辅助装置是永久或半永久植入的,并且心室辅助装置的叶轮是经皮供能的,例如,使用磁耦合到叶轮的外部天线。
[0167] 如图1B所示,图1B示出了在左心室中部署心室辅助装置的步骤,典型地,心室辅助装置的远侧端部通过导引线10被引导至左心室。在将装置的远侧端部插入左心室期间,递送导管143被设置在装置的远侧端部之上。一旦装置的远侧端部被设置在左心室中,则递送导管典型地缩回到主动脉,并且导引线被从受试者身体中抽出。典型地,递送导管的缩回引起装置的远侧端部的自扩展部件呈现非径向约束构型,如下文进一步详细描述的。典型地,心室辅助装置被插入受试者身体内,以便为受试者提供急性治疗。对于一些应用,为了在治疗结束时将左心室装置从受试者身体内抽出,递送导管在装置的远侧端部之上被推进,这使得装置的远侧端部的自扩展部件呈现径向约束构型。可替代地或附加地,装置的远侧端部缩回到递送导管中,这使得装置的远侧端部的自扩展部件呈现径向约束构型。
[0168] 对于一些应用(未示出),心室辅助装置和/或递送导管143在其远侧端部处包括超声换能器,并且心室辅助装置在超声引导下朝向受试者的心室被推进。
[0169] 现在参考图1C,其更详细地示出了心室辅助装置20的泵部分27。典型地,叶轮50设置在泵出口管24的远侧节段102内,并被配置为通过旋转将血液从左心室泵入主动脉。泵出口管典型地在泵出口管的远侧端部32处限定一个或更多个血液入口开口108,在叶轮运行期间,血液经由血液入口开口从左心室流入到泵出口管中。对于一些应用,泵出口管的近侧节段106限定一个或更多个血液出口开口109,在叶轮运行期间,血液经由血液出口开口从泵出口管流入升主动脉。
[0170] 对于一些应用,典型地包括计算机处理器25的控制台21(如图1A所示)控制叶轮旋转。例如,计算机处理器可以控制马达74(例如,如图7A所示),马达74被设置在马达单元23(图1A示出)内,并且马达74经由驱动线缆130(例如,在图7A示出)驱动叶轮旋转。对于一些应用,计算机处理器被配置为检测受试者的生理参数(例如左心室压力、心脏后负荷、左心室压力的变化率等)并且响应于此来控制叶轮的旋转,如下文进一步详细描述的。典型地,本文描述的由计算机处理器执行的运行根据所使用的存储器技术将存储器的物理状态转换成具有不同的磁极性、电荷等,该存储器是与计算机处理器通信的真实物理制品。计算机处理器25典型地是用计算机程序指令编程的硬件装置,以产生专用计算机。例如,当被编程来执行本文描述的技术时,计算机处理器25典型地充当专用的心室辅助计算机处理器和/或专用的血泵计算机处理器。
[0171] 对于一些应用,清洗系统29(在图1A中示出)驱动流体(例如,葡萄糖溶液)穿过心室辅助装置20的多个部分,例如,以便冷却装置的多个部分和/或以便冲刷来自装置的多个部分的碎屑。清洗系统29将在下文中进一步详细描述。
[0172] 典型地,沿着泵出口管24的远侧节段102,框架34围绕叶轮50设置在泵出口管内。框架典型地由形状记忆合金制成,例如由镍诺制成。对于一些应用,框架的形状记忆合金成形为使得在没有任何力被施加到管24的远侧节段102的情况下,框架的至少一部分(并且因此管24的远侧节段102)呈现大致上圆形、椭圆形或多边形的截面形状。通过呈现其大致上圆形、椭圆形或多边形的截面形状,框架被配置为将泵出口管的远侧部分保持在打开状态。典型地,在心室辅助装置的运行期间,泵出口管的远侧部分被配置为放置在受试者身体内,使得泵出口管的远侧部分至少部分地设置在左心室内。
[0173] 对于一些应用,沿着泵出口管24的近侧节段106,框架不设置在泵出口管内,因此泵出口管不被框架34支撑在打开状态。泵出口管24典型地由不可渗透血液的可塌缩材料制成。例如,泵出口管24可以包括聚氨酯、聚酯和/或硅树脂。可替代地或附加地,泵出口管由聚对苯二甲酸乙二醇酯(PET)和/或聚醚嵌段酰胺(例如, )制成。对于一些应用(未示出),该泵出口管用加强结构(例如诸如编织镍钛诺管的编织加强结构)加强。典型地,泵出口管的近侧部分被配置为放置成使得它至少部分地设置在受试者的升主动脉内。对于一些应用,泵出口管的近侧部分穿过受试者的主动脉瓣,从受试者的左心室进入受试者的升主动脉,如图1B所示。
[0174] 如上所述,泵出口管典型地在泵出口管的远侧端部处限定一个或更多个血液入口开口108,在叶轮运行期间,血液经由血液入口开口从左心室流入到泵出口管中。对于一些应用,泵出口管的近侧部分限定一个或更多个血液出口开口109,在叶轮运行期间,血液经由血液出口开口从泵出口管流入升主动脉。典型地,泵出口管限定多个血液出口开口109,例如,介于两个血液出口开口和八个血液出口开口之间(例如,介于两个血液出口开口和四个血液出口开口之间)。在叶轮运行期间,通过泵出口管的血流的压力典型地将管的近侧部分保持在打开状态。对于一些应用,例如,在叶轮发生故障的情况下,泵出口管的近侧部分被配置为响应于泵出口管的近侧部分外的压力超过泵出口管的近侧部分内的压力而向内塌缩。以这种方式,泵出口管的近侧部分充当安全,从而防止血流从主动脉逆向进入左心室。
[0175] 再次参考图1C,对于一些应用,框架34被成形为使得框架限定近侧锥形部分36、中央柱形部分38和远侧锥形部分40。典型地,近侧锥形部分使得锥体的窄端相对于锥体的宽端是近侧的。更典型地,远侧锥形部分使得锥体的窄端相对于锥体的宽端是远侧的。对于一些应用,泵出口管24延伸到柱形部分38的远侧端部(或稍微在其近侧或远侧),使得泵出口管的远侧端部限定单个面向轴向的血液入口开口108,如图1C所示。对于一些应用,在框架34的至少一部分内,内衬39衬在框架上,如下文参考图12A‑图12B所述。根据相应的应用,内衬在框架的被内衬所衬的部分之上与泵出口管24部分重叠或完全重叠。对于这样的应用,内衬的远侧端部限定单个面向轴向的血液入口开口108。对于一些应用,泵出口管和内衬两者都在框架的柱形部分的远侧端部之前终止,使得框架的柱形部分的远侧部分未被覆盖,如下文参考图13所述。
[0176] 典型地,泵出口管24包括锥形近侧部分42和柱形中央部分44。(典型地,锥形近侧部分36完全设置在上文所述的近侧节段106内,并且柱形中央部分典型地从近侧节段106内延伸到远侧节段102。)近侧锥形部分典型地使得锥体的窄端相对于锥体的宽端是近侧的。典型地,血液出口开口109由泵出口管24限定,使得开口至少部分地沿着管24的近侧锥形部分42延伸。对于一些这样的应用,血液出口开口是泪珠形的,如图1C所示。典型地,血液出口开口的泪珠形属性与至少部分地沿着管24的近侧锥形节段延伸的开口相结合,使得血液沿着与管24的纵向轴线基本上平行的流线在血液出口开口的位置处流出血液出口开口。
[0177] 对于一些应用(未示出),泵出口管24的直径沿着泵出口管的中央部分的长度变化,使得泵出口管的中央部分具有截头锥形状。例如,泵出口管的中央部分可以从其近侧端部向其远侧端部变宽,或者可以从其近侧端部向其远侧端部变窄。对于一些应用,在其近侧端部处,泵出口管的中央部分具有介于5mm与7mm之间的直径,而在其远侧端部处,泵出口管的中央部分具有介于8mm与12mm之间的直径。
[0178] 再次参考图1C,心室辅助装置典型地包括远侧末端元件107,该远侧末端元件107相对于框架34设置在远侧并且包括轴向轴杆接收管126和远侧末端部分120,这两者将在下文中进一步详细描述。
[0179] 现在参考图1D,图1D是根据本发明的一些应用的心室辅助装置20的示意图,其中泵出口管24延伸到框架的远侧锥形部分40的端部,并且泵出口管限定多个侧向血液入口开口108。对于这种应用,泵出口管典型地限定远侧锥形部分46,其中锥体的窄端相对于锥体的宽端是远侧的。对于一些这样的应用,泵出口管限定两个到四个侧向血液入口开口。典型地,对于这样的应用,每个血液入口开口108所限定的面积大于20平方毫米(例如,大于30平方毫米)和/或小于60平方毫米(例如,小于50平方毫米),例如,20‑60平方毫米或30‑50平方毫米。可选地或附加地,出口管限定更多数量的较小血液入口开口(未示出),例如10个以上的小血液入口开口、50个以上的小血液入口开口、100个以上的小血液入口开口或150个以上的小血液入口开口,例如50‑100个小血液入口开口、100‑150个小血液入口开口或150‑200个小血液入口开口。对于一些这样的应用,每个小血液入口开口所限定的面积大于0.1平方毫米(例如,大于0.3平方毫米)和/或小于5平方毫米(例如,小于1平方毫米),例如,
0.1‑5平方毫米、0.2‑0.5平方毫米或0.3‑1平方毫米。
[0180] 典型地,泵出口管的远侧锥形部分46被配置为减少来自左心室的结构(例如索、心肉柱和/或乳头肌)进入框架并可能被叶轮和/或轴向轴杆(叶轮安装在该轴向轴杆上)损坏和/或导致左心室辅助装置损坏的风险。因此,对于一些应用,小血液入口开口成形为使得在至少一个方向上开口的宽度(或跨度)小于1mm,例如0.1‑1mm,或0.3‑0.8mm。通过限定如此小的宽度(或跨度),典型的情况是,来自左心室的结构(例如腱索、心肉柱和/或乳头肌)被阻止进入框架。对于一些应用,小血液入口开口限定大致矩形(或椭圆形)形状。对于一些这样的应用,小血液入口开口的长度与宽度之比在1.1:1至4:1之间,例如在3:2至5:2之间。对于一些应用,通过具有这样的形状,小血液入口开口被配置为(a)阻止来自左心室的结构(例如腱索、心肉柱和/或乳头肌)进入框架,但是(b)提供泵出口管的限定小血液入口开口的部分,该部分具有相对高的孔隙率。典型地,泵出口管的限定小血液入口开口的部分具有大于40%的孔隙率,例如大于50%(其中孔隙率定义为该部分的多孔以用于血液流动的面积的百分比)。
[0181] 现在参考图1E和图1F,图1E和图1F是心室辅助装置20的示意图,根据本发明的一些应用,心室辅助装置包括在装置的远侧区域中的编织结构260和/或网状物282,编织结构和/或网状物被配置为将心室辅助装置的血液入口开口与心室的内部结构分开。编织结构260典型地与关于Tuval的US 2019/0209758的图20B描述的编织结构260大致上类似,其通过引用并入本文。网状物282大致上类似于关于Tuval的美国2019/0209758的图21D描述的网状物282,其通过引用并入本文。
[0182] 参考图1E,对于一些应用,编织结构260(例如,编织金属或合金,例如形状记忆合金(例如,镍钛诺))设置在该装置的远侧区域。例如,编织材料可以设置在装置的远侧端部。可选地或附加地,该装置可以包括远侧末端元件107(其典型地如参考图14‑图16B所述),并且编织材料围绕该装置的一部分设置,以便覆盖远侧末端元件的一部分。对于一些应用,编织材料设置在框架34的至少一部分之上。例如,编织材料可以围绕框架的一部分,该一部分从沿框架的至少一个纵向位置(在该纵向位置处,血液出口管24结束和/或内衬39结束)向远侧延伸,直到框架的远侧端部。对于一些应用,编织结构设置成覆盖血液入口开口108。
[0183] 如图1F所示,对于一些应用,远侧末端元件107的外表面包括径向可扩展网状物282,径向可扩展网状物282被配置为当远侧末端元件107设置在受试者的左心室内时自扩展。对于一些应用,该装置包括远侧末端元件,远侧末端元件大致上如参考图14‑图16B所述,并且网状物围绕该装置的一部分设置,以便覆盖远侧末端元件的一部分。对于一些应用,网状物设置在框架34的至少一部分之上。例如,网状物可以围绕框架的一部分,该一部分从沿框架的至少一个纵向位置(在该纵向位置处,血液出口管24结束和/或内衬39结束)向远侧延伸,直到框架的远侧端部。对于一些应用,网状物被设置成覆盖血液入口开口108。
[0184] 典型地,编织结构260和/或网状物282将一个或更多个血液入口开口108与左心室的三维内部结构分开。以这种方式,编织结构260和/或网状物282将一个或更多个血液入口开口108与室间隔、腱索、乳头肌、心肉柱和/或左心室的心尖分开。作为用于将一个或更多个血液入口开口108与左心室的内部结构分开的编织结构和/或网状物的替代或补充,框架34在血液入口开口108附近的单元格被配置为限定比框架的其他部分中的开口小的开口。
例如,框架的远侧锥形部分中的单元格所能够限定的开口比框架的近侧锥形部分中的单元格所限定的开口小。可选地或附加地,框架的远侧锥形部分中的单元格所能够限定的开口比框架的柱形部分中的单元格所限定的开口小。
[0185] 现在参考图2,图2是根据本发明的一些应用的容纳心室辅助装置20的叶轮的框架34的示意图。如上文所述,框架34典型地由诸如镍钛诺的形状记忆合金制成,并且框架的形状记忆合金定形成使得框架(并且因此管24)在没有任何力被施加到泵出口管24和/或框架
34的情况下呈现大致上圆形、椭圆形或多边形的截面形状。通过呈现其大致上圆形、椭圆形或多边形的截面形状,框架被配置为将管的远侧部分保持在打开状态。
[0186] 典型地,框架是支架状框架,因为它包括依次限定单元格的支柱。更典型地,框架被泵出口管24覆盖,和/或被内衬39覆盖,如下文参考图12A‑图12B所述。如下文所述,对于一些应用,叶轮50相对于框架34进行轴向往复运动。典型地,在叶轮相对于框架的运动过程中,叶轮的限定叶轮最大跨度的部分的位置被设置在框架34的柱形部分38内。在一些情况下,如果框架34的柱形部分38的单元格太大,则泵出口管24和/或内衬39在单元格的边缘之间被拉伸,使得泵出口管24和/或内衬39不限定圆形截面。对于一些应用,如果这发生在叶轮的限定叶轮最大跨度的部分所设置的区域中,则这导致在叶轮旋转周期的过程中在该位置处在叶轮叶片的边缘与管24(和/或内衬)之间的间隙不恒定。对于一些应用,与在叶轮的旋转周期的过程中在该位置处在叶轮叶片的边缘与管24(和/或内衬)之间存在恒定的间隙的情况相比,这可能导致溶血增加。
[0187] 参考图2,至少部分地考虑到上一段中描述的问题,在框架34的柱形部分38内,框架限定大量相对小的单元格。典型地,当框架设置在其非径向约束构型中时,框架的柱形部分内每个单元格的最大单元格宽度CW(即,如围绕柱形部分38的圆周测量的,从单元格一侧的中央接合部处的支柱的内边缘到单元格另一侧的中央接合部处的支柱的内边缘的距离)小于2mm,例如在1.4mm和1.6mm之间,或者在1.6和1.8mm之间。由于单元格相对较小,泵出口管24(和/或内衬)在框架的柱形部分内限定了基本上圆形截面。
[0188] 仍然参考图2,并且从框架的近侧端部(在图的左侧)开始,框架典型地限定以下部分:(a)联接部分31,框架经由该联接部分联接到心室辅助装置的近侧支承件116(在图4中示出),(b)近侧锥形部分36,(c)柱形部分38,(d)远侧锥形部分40,和(e)远侧支柱接合部33。如所示的,当框架从框架的近侧端部向框架的中心过渡时(例如,当框架通过联接部分
31,通过近侧锥形部分36,并且过渡到柱形部分38时),框架的支柱37经过接合部35,在这些接合部35处,两个支柱以Y形形状从单个支柱分支出来。如下文进一步详细描述的,典型地,框架34通过框架被轴向伸长而以径向约束(即,卷曲)构型放置在递送导管143中。此外,典型地,框架将其径向变窄传递给叶轮,并且叶轮通过在框架内轴向伸长而变得受到径向约束。对于一些应用,以上述方式配置的框架的支柱有助于将轴向伸长从递送导管(或被配置为卷曲框架的其他装置)传递到框架,这进而有助于将轴向伸长传递到叶轮。这是因为从每个接合部35分支出来的成对支柱被配置为围绕接合部枢转,并且靠近彼此移动,从而闭合。
[0189] 仍然参考图2,对于一些应用,当框架联接到轴向轴杆92(在图4中示出)时,远侧支柱接合部33不周向地连接并且典型地被配置为保持在打开状态,以便叶轮经由框架的远侧端部被放置在框架内。随后,远侧支柱部分围绕远侧支承件118的外侧闭合,如下文参考图5A‑图5B进一步详细描述的。对于一些应用,远侧末端元件107的近侧端部(如图1C所示)将远侧支柱部分围绕远侧支承件118的外侧保持在它们的闭合构型中。
[0190] 典型地,当设置在其非径向约束构型中时,框架34所具有的总长度大于25mm(例如,大于30mm),和/或小于50mm(例如,小于45mm),例如,25‑50mm,或30‑45mm。典型地,当设置在其径向约束构型中(在递送导管143内)时,框架的长度增加2至5mm。典型地,当设置在其非径向约束构型中时,框架34的柱形部分所具有的长度大于10mm(例如,大于12mm)和/或小于25mm(例如,小于20mm),例如,10‑25mm或12‑20mm。对于一些应用,框架的柱形部分的长度与框架的总长度之比大于1:4和/或小于1:2,例如在1:4和1:2之间。
[0191] 现在参考图3A‑图3C,图3A‑图3C是根据本发明的一些应用的叶轮50或其部分的示意图。典型地,叶轮包括至少一个外部螺旋形长形元件52,其围绕中央轴向弹簧54缠绕,使得由螺旋形长形元件限定的螺旋结构与中央轴向弹簧同轴。(如下文进一步详细描述的,典型地,中央轴向弹簧在沿其长度的中间位置处包括管70。此外,如下文所述,本申请的范围包括使用其他轴向结构来代替弹簧。因此,在一些方面,本申请涉及“轴向结构54”。)典型地,叶轮包括两个或更多个螺旋形长形元件(例如,三个螺旋形长形元件,如图3A‑图3C所示)。对于一些应用,螺旋形长形元件和中央轴向弹簧由形状记忆材料(例如诸如镍钛诺的形状记忆合金)制成。典型地,每个螺旋形长形元件和中央轴向弹簧支撑介于它们之间的材料(例如,弹性体,例如聚氨酯,和/或硅树脂)的膜56。对于一些应用,材料的膜包括嵌入其中的镍钛诺片,例如为了加强该材料的膜。出于说明的目的,叶轮在图3A中示出为没有该材料的膜。图3B和图3C分别示出了叶轮的透视图,其中该材料的膜被支撑在螺旋形长形元件与弹簧之间。
[0192] 每个螺旋形长形元件与从螺旋形长形元件延伸到弹簧的膜一起限定相应的叶轮叶片,其中螺旋形长形元件限定叶片的外边缘,并且轴向弹簧限定叶轮的轴线。典型地,材料的膜沿着弹簧延伸并且裹覆弹簧。对于一些应用,缝合线53(例如,聚酯缝合线,如图3B和图3C所示)围绕螺旋形长形元件缠绕,例如,如Schwammenthal的US10,864,310中所描述的,其通过引用并入本文。典型地,缝合线被配置为有助于材料(其典型地是弹性体,例如聚氨酯,或者硅树脂)的膜与螺旋形长形元件(其典型地是形状记忆合金,例如镍钛诺)之间的结合。对于一些应用,缝合线(例如聚酯缝合线,未示出)围绕弹簧54缠绕。典型地,缝合线被配置为有助于材料(典型地是弹性体,例如聚氨酯,或硅树脂)的膜与弹簧(典型地是形状记忆合金,例如镍钛诺)之间的结合。
[0193] 图3C的放大图A和B示出了两种可供选择的方式,其中缝合线围绕螺旋形长形元件52栓系。对于某些应用,缝合线围绕螺旋形长形元件的外表面栓系,如放大图A所示。可替代地,螺旋形长形元件在它们的外表面上限定凹槽45,并且缝合线被嵌入在凹槽内,如放大图B所示。典型地,通过将缝合线嵌入在凹槽内,缝合线不会增加叶轮的外轮廓,并且叶轮的外轮廓由螺旋形长形元件的外表面限定。
[0194] 典型地,弹簧54的近侧端部和螺旋形长形元件52的近侧端部从叶轮的近侧衬套(即套筒支承件)64延伸,使得弹簧54的近侧端部和螺旋形长形元件52的近侧端部设置在大致上相同的位置,并具有距叶轮的纵向轴线相似的径向距离。类似地,典型地,弹簧54的远侧端部和螺旋形长形元件52的远侧端部从叶轮的远侧衬套58延伸,使得弹簧54的远侧端部和螺旋形长形元件52的远侧端部设置在大致上相同的位置,并具有距叶轮的纵向轴线相似的径向距离。典型地,弹簧54以及叶轮的近侧衬套64和远侧衬套58限定贯穿其中的腔体,使得叶轮限定贯穿其中的连续腔体62(如图3C所示)。
[0195] 现在参考图4,该图是根据本发明的一些应用的设置在心室辅助装置20的框架34内的叶轮50的示意图。对于一些应用,在框架34的至少一部分内,内衬39衬在框架上,如下文参考图12A‑图12B所述。根据相应的应用,内衬在框架的被内衬所衬的部分之上与泵出口管24部分重叠或完全重叠。对于一些应用,泵出口管和内衬两者都在框架的柱形部分38的远侧端部之前终止,使得框架的柱形部分的远侧部分未被覆盖,如下文参考图13所述。对于一些应用,泵出口管继续覆盖框架的远侧锥形部分,如参考图1D所述。在图4所示的应用中,内衬衬在框架的柱形部分内,并且泵出口管24不覆盖框架的柱形部分。然而,本申请的范围包括将参考图4描述的设备和方法应用于下文参考图1D、图12A‑图12B或图13描述的任何一种应用。
[0196] 如图4所示,典型地,在叶轮50的外边缘与内衬39之间存在间隙G,甚至在叶轮跨度最大的位置处也是如此。对于一些应用,期望叶轮的叶片的外边缘与内衬39之间的间隙相对小,以便叶轮有效地将血液从受试者的左心室泵入受试者的主动脉。然而,还期望在叶轮在框架34内旋转的整个过程中,叶轮的叶片的外边缘与框架34的内表面之间的间隙保持基本上恒定,例如,以便降低溶血的风险。
[0197] 对于一些应用,当叶轮和框架34两者都设置成非径向约束构型时,在叶轮跨度最大的位置处,叶轮的外边缘和内衬39之间的间隙G大于0.05mm(例如,大于0.1mm),和/或小于1mm(例如,小于0.4mm),例如,0.05‑1mm,或0.1‑0.4mm。对于一些应用,当叶轮设置成其非径向约束构型时,在叶轮外径最大的位置处的叶轮外径大于7mm(例如,大于8mm),和/或小于10mm(例如,小于9mm),例如7‑10mm,或8‑9mm。对于一些应用,当框架34设置成其非径向约束构型时,框架34的内径(从内衬39在框架一侧的内侧到内衬在框架相对一侧的内侧来测量)大于7.5mm(例如,大于8.5mm),和/或小于10.5mm(例如,小于9.5mm),例如7.5‑10.5mm或8.5‑9.5mm。对于一些应用,当框架设置成其非径向约束构型时,框架34的外径大于8mm(例如,大于9mm),和/或小于13mm(例如,小于12mm),例如,8‑13mm,或9‑12mm。
[0198] 典型地,轴向轴杆92经由叶轮的腔体62穿过叶轮50的轴线。更典型地,轴向轴杆是刚性的,例如刚性管。(对于一些应用,轴向轴杆的一部分至少部分是柔性的,例如,如参考图20A‑图20C所述。)对于一些应用,叶轮的近侧衬套64联接到轴杆,使得近侧衬套相对于轴杆的轴向位置是固定的,并且叶轮的远侧衬套58相对于轴杆是可滑动的。轴向轴杆本身经由近侧径向支承件116和远侧径向支承件118而径向稳定。进而,轴向轴杆通过穿过由叶轮限定的腔体62来使叶轮相对于框架34的内表面径向稳定,使得在叶轮旋转期间,甚至在叶轮的叶片的外边缘与框架34的内表面之间相对较小的间隙(例如,如上所述的间隙)得以保持。
[0199] 再次参考图3A‑图3C,对于一些应用,叶轮包括从中央轴向弹簧54径向延伸到外部螺旋形长形元件52的多个长形元件67。长形元件67典型地是柔性的,但基本上不能沿着由长形元件67限定的轴线拉伸。进一步典型地,长形元件67中的每一个被配置为基本上不抵抗压缩。相反,每个长形元件67被配置为在螺旋形长形元件52上施加拉力,该拉力防止螺旋形长形元件52径向向外移动,使得(在没有长形元件67的情况下)螺旋形长形元件52和中央轴向弹簧54之间的间隔将大于长形元件67的长度。例如,长形元件67可以包括绳(例如聚酯,和/或另一种聚合物或包含纤维的天然材料)和/或线(例如镍钛诺线,和/或由不同合金或金属制成的线)。以这种方式,长形元件通过对螺旋形长形元件施加拉力而防止叶轮径向扩展。
[0200] 对于一些应用,长形元件67将螺旋形长形元件52(其限定叶轮的叶片的外边缘)保持在相对于中央轴向弹簧54的给定距离内。以这种方式,长形元件67被配置为防止叶轮的外边缘由于在叶轮旋转期间施加在叶轮上的力而被迫径向向外。换句话说,长形元件67用作防止叶轮扩展元件。长形元件67由此被配置为在叶轮旋转期间保持叶轮的叶片的外边缘与框架34的内表面之间的间隙。典型地,在叶轮中使用多于一个(例如,多于两个)和/或少于八个(例如,少于四个)长形元件67,其中每个长形元件67典型地是对折的(即,从中央轴向弹簧54径向延伸到螺旋形长形元件52的外边缘,然后从螺旋形长形元件返回到中央轴向弹簧)。对于一些应用,多个长形元件67由单个绳或单个线形成,其中每个长形元件67从弹簧延伸到相应的螺旋形长形元件52并且返回到中央轴向弹簧54。
[0201] 对于一些应用,叶轮按以下方式制造。近侧衬套64、远侧衬套58和螺旋形长形元件52是由形状记忆材料(例如镍钛诺)的管切割而成的。管的切割以及形状记忆材料的定形典型地以如下方式执行,使得螺旋形长形元件和衬套由形状记忆材料的管限定,该管例如使用与Schwammenthal的US 10,039,874中描述的技术大致上相似的技术切割和定形。典型地,弹簧54被插入到该切割且定形的管中,使得弹簧沿着管的长度至少从近侧衬套延伸到远侧衬套。对于一些应用,当弹簧处于轴向压缩状态时,弹簧被插入到该切割且定形的管中,并且弹簧被配置为通过在近侧衬套和远侧衬套上施加径向力而相对于管保持就位。可替代地或附加地,弹簧的多个部分被焊接到近侧衬套和远侧衬套。对于一些应用,弹簧是由形状记忆材料(例如镍钛诺)的管切割而成的。对于一些这样的应用,弹簧被配置为使得当弹簧设置在非径向约束构型(其中典型地在叶轮运行期间弹簧设置为非径向约束构型)时,在弹簧的圈与其相邻的圈之间基本上没有间隙。
[0202] 对于一些应用,在弹簧54被插入到该切割且定形的管中之后,如上所述的长形元件67被放置成例如以下列方式在弹簧与一个或更多个螺旋形长形元件52之间延伸。芯轴(例如,聚醚醚(PEEK)和/或聚四氟乙烯(PTFE)芯轴)穿过由弹簧和衬套限定的腔体被插入。然后穿绕绳或线,使得绳或线(a)从芯轴传递到螺旋形长形元件52中的第一螺旋形长形元件,(b)从螺旋形长形元件52中的第一螺旋形长形元返回到芯轴,(c)围绕芯轴,并到达螺旋形长形元件52中的第二螺旋形长形元件,(d)从螺旋形长形元件52中的第二螺旋形长形元件返回到芯轴,等等。一旦绳或线已经从芯轴穿绕到每个螺旋形长形元件52并再次返回,绳或线的端部就相互联接,例如,通过将它们彼此栓系在一起。对于一些应用,针对每个螺旋形长形元件52使用单独的绳或线。典型地,每个绳或线从螺旋形长形元件围绕芯轴穿过并返回到螺旋形长形元件,绳的两端相互栓系在一起。对于一些应用,如所示,在弹簧54的纵向中央位置处,弹簧被成形为限定管70(即,在该位置处弹簧不限定圈),并且绳或线围绕该管缠绕。对于一些应用,绳或线不围绕该管缠绕,并且不穿过叶轮的纵向轴线。相反,绳或线通过固定元件75(例如环)相对于管70固定,如下文参考图3F进一步详细描述的那样。
[0203] 对于一些应用,在该阶段,缝合线53(例如,聚酯缝合线)围绕螺旋形长形元件52缠绕,以便在叶轮制造的后续阶段中有利于材料(其典型地是弹性体,例如聚氨酯,或硅树脂)的膜与螺旋形长形元件52(其典型地是形状记忆合金,例如镍钛诺)之间的结合。对于一些应用,缝合线(例如聚酯缝合线,未示出)围绕弹簧54缠绕。典型地,缝合线被配置为在叶轮制造的后续阶段有助于材料(其典型地是弹性体,例如聚氨酯,或硅树脂)的膜与弹簧(其典型地是形状记忆合金,例如镍钛诺)之间的结合。
[0204] 典型地,在这个阶段,已经组装了如图3A所示的结构59。该结构包括切割且定形的管,该切割且定形的管限定近侧衬套和远侧套筒、螺旋形长形元件和弹簧(以及可选地,长形元件和缝合线)。该结构被浸入限定膜56的材料中。对于一些应用,组装好的结构被浸入材料中,其中芯轴被设置成穿过由弹簧和衬套限定的腔体,然而应注意到芯轴没有在图3A中示出。典型地,制成膜的材料是硅树脂和/或聚氨酯(和/或类似的弹性体),并且当材料处于未固化的液态时,组装好的结构被浸入该材料中。随后,将材料固化,使得其固态化,例如,通过使其干燥。对于一些应用,当材料干燥时,旋转该组装好的结构,这通常有助于在每个叶轮叶片内形成具有基本上均匀厚度的材料的膜。一旦材料已经干燥,则典型地从由衬套和弹簧限定的腔体中移除芯轴。
[0205] 典型地,上述过程的结果是,连续的材料的膜在每个螺旋形长形元件与弹簧之间延伸,并且该连续的材料的膜还沿着弹簧的长度延伸,以便限定管,其中弹簧嵌入该管内。膜的从每个螺旋形长形元件延伸到弹簧的部分限定叶轮叶片。对于叶轮包括长形元件67的应用,长形元件典型地嵌入膜的这些部分内。
[0206] 典型地,长形元件67被配置为限制叶轮叶片的径向扩展,如上文详细描述的那样。对于一些应用,长形元件允许叶轮叶片扩展的跨度是使用以下技术设置的。如上段所述,在相应叶片内的绳或线的两端相互栓系在一起。典型地,每个叶片中的绳或线的端部被栓系成使得叶轮叶片的跨度被设置为小于所需的叶轮的跨度,并且使得在绳或线的两端相互栓系的结中存在一些松弛。随后,通过紧固各个叶片内的绳或线的端部之间的结,将叶轮叶片的外边缘彼此拉开,以便增大叶轮叶片的跨度。重复该过程并测量叶轮叶片的跨度,直到达到所需的叶轮叶片跨度。随后,将栓系有绳或线的结构59浸入在弹性体材料(用该弹性体材料制成膜56)中,并且允许弹性体材料干燥,使得绳或线以叶轮叶片所需的跨度保持为端部相互栓系在一起。
[0207] 典型地,叶轮50经导管插入左心室,同时叶轮50处于径向约束构型。在径向约束构型中,螺旋形长形元件52和中央轴向弹簧54两者都变得轴向伸长,并且径向受约束。典型地,材料(例如,硅树脂和/或聚氨酯)的膜56改变形状以与螺旋形长形元件和中央轴向弹簧(这两者均支撑材料的膜)的形状变化相一致。典型地,使用弹簧来支撑膜的内边缘允许膜改变形状,而膜不会破裂或塌缩,这是因为弹簧提供了膜的内边缘所结合的大表面积。对于一些应用,与例如使用刚性轴杆来支撑膜的内边缘相比,使用弹簧来支撑膜的内边缘减小了叶轮可以在径向受约束的直径,因为弹簧本身的直径可以通过使弹簧轴向伸长来减小。
[0208] 如上所述,对于一些应用,叶轮50的近侧衬套64联接到轴向轴杆92,使得近侧衬套相对于轴杆的轴向位置固定,并且叶轮的远侧衬套58相对于轴杆是可滑动的。对于一些应用,当为了将叶轮插入心室或为了将叶轮从受试者身体内抽出而在径向约束叶轮时,通过远侧衬套沿轴向轴杆向远侧滑动而使叶轮轴向伸长。如图3A‑图3C所示,在受试者身体内被释放之后,叶轮呈现其非径向约束构型(其中典型地在叶轮运行期间叶轮设置为非径向约束构型)。
[0209] 注意,出于说明性目的,在一些图中,叶轮50被示出为不包括关于图3A‑图3C所示和描述的叶轮的所有特征。例如,一些图显示叶轮不包括缝合线53和/或长形元件67。本申请的范围包括结合本文所述的任何设备和方法使用具有关于图3A‑图3C所示和所描述的任何特征的叶轮。
[0210] 对于一些应用,以下技术被用来以不导致从叶轮叶片的有效边缘突出的方式增强弹性体材料与至少一个螺旋形长形元件结合。在浸入弹性体材料之前,用联接剂涂覆螺旋形长形元件。典型地,选择具有至少两个官能团的联接剂,该至少两个官能团被配置为分别与螺旋形长形元件和弹性体材料结合。例如,可以使用硅烷化合物,例如n‑(2‑氨基乙基)‑3‑氨基丙基三甲基硅烷,该硅烷化合物含有第一官能团(例如(OH)),该第一官能团被配置为与螺旋形长形元件(其典型地是由合金例如镍钛诺制成)结合,并且该硅烷化合物含有第二官能团(例如(NH2)),该第二官能团被配置为与弹性体材料结合。典型地,联接剂中的官能团仅在给定的时间段(例如,大约一小时或更少)内有效。因此,在这段时间段内,围绕螺旋形长形元件施加一层弹性体材料。典型地,该一层弹性体材料是与膜56中使用的相同的弹性体材料或类似的弹性体材料。例如,聚碳酸酯基热塑性聚氨酯,如Aromatic TM TM
Carbothane (如Aromatic Carbothane 75A)可以用于膜56中,并且该涂覆层可以是相同的聚碳酸酯基热塑性聚氨酯,或者类似的聚碳酸酯基热塑性聚氨酯,例如 (例如 )。
[0211] 对于一些应用,在涂覆层已经施加到螺旋形长形元件之后,该涂覆的螺旋形长形元件被喷涂另一层弹性体材料。典型地,被喷涂的弹性体材料是与用作膜56的弹性体材料相同的弹性体材料或类似的弹性体材料。例如,聚碳酸酯基热塑性聚氨酯,比如Aromatic TM TMCarbothane (如Aromatic Carbothane 75A),可以用做膜56,并且被喷涂的材料可以是相同的聚碳酸酯基热塑性聚氨酯,或者类似的聚碳酸酯基热塑性聚氨酯,例如
(例如 )。对于一些应用,将喷涂剂施加到螺旋形长形元件使螺旋形长形
元件变圆。典型地,当螺旋形长形元件具有圆形截面时,弹性体材料在与螺旋形长形元件的界面处形成具有基本上均匀厚度的层。对于一些应用,如上一段所述,施加一层弹性体材料的步骤至少部分地使螺旋形长形元件变圆。
[0212] 对于一些应用,在喷涂剂已经施加到螺旋形长形元件之后,结构59被浸入弹性体中,膜56由该弹性体制成,例如,如上所述。对于一些应用,用于制造膜的材料是弹性材料,弹性材料所具有的极限伸长率大于300%,例如大于400%。典型地,该材料具有相对较低的分子量。对于一些应用,该材料所具有的熔体流动指数(它是对分子量的间接测量)至少为4,例如至少为4.3。对于一些应用,该材料所具有的极限拉伸强度超过6000psi,例如超过TM
7000psi,或超过7500psi。对于一些应用,该材料是热塑性聚氨酯,例如,Carbothane 。对于TM
一些应用,使用Aromatic Carbothane 75A。典型地,这种材料结合了以下一个或更多个特性:在浸入过程中没有引起外径损失,抗疲劳,抗因卷曲而变形,以及在卷曲过程中外径损失低。
[0213] 根据上述对将膜56施加到螺旋形长形元件的描述,本发明的范围包括在将螺旋形长形元件浸入到用于制造膜56的弹性体材料中之前将相同的弹性体材料、不同的弹性体材料和/或中介材料的附加层施加到螺旋形长形元件的任何技术,无论是通过喷涂、浸入或不同的涂覆方法。对于一些应用,弹性体材料的附加层被配置为使螺旋形长形元件变圆,和/或用作中介体以增强螺旋形长形元件和材料的膜56之间的结合。对于一些应用,中介材料(例如硅烷)被配置为充当中介体,以增强螺旋形长形元件和材料的膜56之间的结合。
[0214] 现在参考图3D和图3E,图3D和图3E是叶轮50的示意图,根据本发明的一些应用,叶轮包括限定多个长形元件67的单个集成的防止叶轮过度扩展元件72。出于说明的目的,图3D和图3E示出了在没有材料的膜56的情况下的叶轮。对于一些应用,元件72限定环73和从环径向延伸的多个长形元件67。对于一些应用,代替围绕弹簧54穿绕绳和/或线,元件72的环73被围绕弹簧放置,例如,通过围绕管70放置,管70典型地设置在弹簧的纵向中央位置。
然后,各个长形元件67的端部联接到各个螺旋形长形元件52。如上所述,长形元件67典型地是柔性的,但基本上不能沿着由长形元件限定的轴线拉伸。进一步典型地,长形元件67中的每一个被配置为基本上不抵抗压缩。更确切地,每个长形元件67被配置为在螺旋形长形元件52上施加拉力,该拉力防止螺旋形长形元件52径向向外移动,使得(在没有长形元件67的情况下)螺旋形长形元件52和中央轴向弹簧54之间的间隔将大于长形元件67的长度。当作用在叶轮上的力将导致螺旋形长形元件52径向向外移动时(在没有长形元件67的情况下),防止叶轮过度扩展元件被配置为防止叶轮的径向扩展。典型地,相应的长形元件67设置在每个叶轮叶片内,并被配置为防止叶轮叶片径向扩展。对于一些应用,元件72由聚酯和/或另一聚合物或含有纤维的天然材料和/或镍钛诺(或类似的形状记忆合金)制成。
[0215] 注意,本申请的范围包括与具有与图3D‑图3E所示结构不同结构的叶轮一起使用的单个集成防止叶轮过度扩展元件72。例如,单个集成的防止叶轮过度扩展元件72可以与具有不同于弹簧54的构造的轴向结构的叶轮一起使用。典型地,轴向结构限定穿过其中的腔体,使得叶轮限定穿过其中的腔体62。
[0216] 现在参考图3F,它是叶轮50的示意图,根据本发明的一些应用,叶轮包括被配置为相对于管70固定长形元件67的固定元件75。对于一些应用,包括长形元件67的绳或线不围绕管70缠绕,并且不穿过叶轮的纵向轴线。而是,绳或线通过固定元件75相对于管70固定。典型地,在管的外表面上的最接近螺旋形长形元件(绳或线的端部栓系到该螺旋形长形元件)的最大跨度的位置处,绳或线固定到管70的外表面。对于一些应用,固定元件包括环,如所示。对于一些这样的应用,环限定了小凹口(或孔眼)80,通过这些凹口80,绳或线在环和管70之间穿过。
[0217] 现在参考图3Gi和图3Gii,这些图是根据本发明的一些应用的叶轮50的图片。如所示,对于一些应用,通过使用上面描述的方法制造叶轮,叶轮50的相邻叶片51成形为限定连续的U形曲面。如曲线55所示,曲线55沿叶轮的长度的至少一部分添加到图3Gii,当弹性体材料的膜56从一个叶片过渡到相邻叶片时,膜形成连续的U形曲线。注意到,即使在沿叶轮的轴线延伸的弹簧54处,材料的膜的曲率也基本上没有中断。对于一些应用,由于以上述方式形成叶轮,材料的膜呈现上述曲率。典型地,通过限定连续的U形曲面,叶轮叶片被配置为提供平滑流线(沿着该平滑流线,血液流过叶轮),从而相对于相邻叶片没有限定连续曲面的情况(例如,相对于曲率在弹簧54处被中断的情况)提高了叶轮泵送血液的效率和/或降低了溶血的风险。对于一些应用,使用大致上类似的叶轮,其中叶轮具有被配置为不同于弹簧54的轴向结构(例如,柱形轴向结构)。典型地,轴向结构限定穿过其中的腔体,使得叶轮限定穿过其中的腔体62。可替代地,叶轮包括弹簧54(其包括管70)作为轴向结构,如所示。
[0218] 当从叶轮的远侧端部观察时,叶轮的每个叶片的压力侧(即,在叶轮运行期间推压血液的侧)在叶轮的远侧区域中是凸的,在长形元件67的区域中转变成基本上径向定向,然后在叶轮的近侧区域中是凹的。(出于说明的目的,叶轮叶片的压力侧的相对侧(即“非压力侧”)在图3Gii中表示。)因此,当使用时,由叶轮泵送的血液首先由凸叶轮表面泵送,然后由凹叶轮表面泵送。对于一些应用,长形元件67被设置在沿叶轮叶片的长度的大约一半的地方,并且被配置为有助于材料的膜从具有凸曲率过渡为具有凹曲率。因此,典型地,在叶轮叶片内的长形元件67的区域处,叶片基本上径向定向。典型地,通过在叶轮的近侧区域中限定凹表面,叶轮的叶片的压力侧被配置为即使血液已经流动和/或在叶轮的远侧区域内对其施加压力之后仍增加血液的流量和/或压力。可选地(未示出),叶轮的每个叶片的压力侧(即,在叶轮运行期间推压血液的侧)在叶轮的远侧区域中是凹的,在长形元件67的区域中转变成基本上径向定向,然后在叶轮的近侧区域中是凸的。
[0219] 现在参考图5A和图5B,这些图是根据本发明的一些应用的分别处于其非径向约束状态和径向约束状态中的心室辅助装置20的叶轮50和框架34的示意图。在叶轮和框架经导管插入受试者体身内期间,叶轮和框架典型地被设置为径向约束状态,并且在叶轮在受试者的左心室内运行期间,叶轮和框架被设置为非径向约束状态。如上所述,典型地,泵出口管24被设置在框架的至少一部分之上,并且从框架的至少一部分向近侧延伸。然而,出于说明的目的,在图5A‑图5B中示出了没有泵出口管24的框架和叶轮。
[0220] 如图5B所示,框架和叶轮典型地被递送导管143保持在径向约束构型。典型地,在叶轮的径向约束构型中,叶轮所具有的总长度大于15mm(例如,大于20mm),和/或小于30mm(例如,小于25mm),例如,15‑30mm,或20‑25mm。进一步典型地,在叶轮的非径向约束构型中,叶轮所具有的长度大于8mm(例如,大于10mm),和/或小于18mm(例如,小于15mm),例如,8‑18mm,或10‑15mm。此外,典型地,当叶轮和框架34布置成径向约束构型时(如图5B所示),叶轮具有小于2mm(例如,小于1.6mm)的外径,并且框架具有小于2.5mm(例如,小于2.1mm)的外径。
[0221] 如上所述,典型地,轴向轴杆92经由叶轮的腔体62(腔体62在图3C中示出)穿过叶轮50的轴线。典型地,叶轮的近侧衬套64经由联接元件65联接到轴杆,使得近侧衬套相对于轴杆的轴向位置固定,并且叶轮的远侧衬套58相对于轴杆是可滑动的。轴向轴杆本身经由近侧径向支承件116和远侧径向支承件118而径向稳定。
[0222] 典型地,框架34的联接部分31例如经由卡扣配合联接和/或经由焊接被联接到近侧径向支承件116。典型地,在框架34的远侧端部处,远侧支柱接合部33被放置到由远侧径向支承件118的外表面限定的凹槽中,凹槽被成形为与远侧支柱部分的形状相一致。如所示出的,远侧末端元件107(其限定远侧末端部分120)的近侧端部典型地将远侧支柱部分保持在其围绕远侧径向支承件118外侧的闭合构型中。对于一些应用,该装置包括从远侧径向支承件向远侧延伸的远侧延伸部121。典型地,该延伸部被配置为加强远侧末端元件的被轴杆92的远侧端部移动到其中的区域(例如,下文描述的轴向轴杆接收管126或其一部分)。
[0223] 如上所述,轴向轴杆92经由近侧径向支承件116和远侧径向支承件118而径向稳定。进而,轴向轴杆通过穿过由叶轮限定的腔体62而使叶轮相对于框架34的内表面得到径向稳定,使得如上所述,在叶轮旋转期间,甚至在叶轮的叶片的外边缘与框架34的内表面之间的相对较小的间隙(例如,如上所述的间隙)也得以保持。对于一些应用,轴向轴杆92由不锈制成,并且近侧支承件116和/或远侧支承件118由硬化钢制成。典型地,当为了将叶轮和框架插入受试者身体内而卷曲(即,径向约束)叶轮和框架时,叶轮的远侧衬套58被配置为沿轴向轴杆在远侧方向上滑动,使得叶轮变得轴向伸长,而近侧衬套相对于轴向轴杆保持在轴向固定位置。更一般地,通过远侧衬套在轴向轴杆之上滑动,而近侧衬套相对于轴向轴杆保持在轴向固定位置,叶轮从其径向约束构型改变到其非径向约束构型,并且反之亦然。
[0224] 典型地,叶轮本身不直接设置在任何径向支承件或推力支承件内。而是,支承件116和118充当相对于轴向轴杆的径向支承件。典型地,泵部分27(以及更一般地心室辅助装置20)不包括任何被配置为设置在受试者身体内并且被配置为抵抗由叶轮的旋转产生的推力的推力支承件。对于一些应用,一个或更多个推力支承件被设置在受试者身体外(例如,在如图1A、图7A‑图7Bii所示的马达单元23内),并且对由叶轮的旋转产生的推力的抵抗仅由设置在受试者身体外的一个或更多个推力支承件提供。对于一些应用,机械元件和/或磁性元件被配置为将叶轮保持在给定的轴向位置范围内。例如,设置在驱动线缆130的近侧端部处(例如,受试者身体外)的磁体(例如,磁体82,下文参考图7A进行描述)可以被配置为向叶轮施加轴向运动,和/或将叶轮保持在给定的轴向位置范围内。
[0225] 现在参考图6A和图6B,这些图是根据本发明的一些应用的在心室辅助装置的叶轮50相对于心室辅助装置的框架34处于运动周期的各个阶段的心室辅助装置20的示意图。对于一些应用,当叶轮通过旋转来通过管24泵送血液时,轴向轴杆92(叶轮固定于其上)被驱动,以通过使轴向轴杆以轴向往复运动的方式移动而使叶轮在框架34内轴向往复移动,如下面参考图7A‑图7Bii进一步详细描述的。可替代地或附加地,叶轮和轴向轴杆被配置为响应于作用在叶轮上的力而在框架34内轴向往复移动,而不需要主动驱动轴向轴杆来使轴向轴杆以轴向往复运动的方式移动。典型地,在受试者的心动周期过程中,左心室与主动脉之间的压差从心室收缩期(以下称为“收缩期”)期间的近似零变化到心室舒张期(以下称为“舒张期”)期间的相对大的压差(例如,50mmHg‑70mmHg)。对于一些应用,由于在舒张期过程中叶轮泵送所抵抗的压差增加(并且由于驱动线缆130是可拉伸的),因此与叶轮在收缩期过程中相对于框架34的位置相比,叶轮在舒张期过程中相对于框架34被推向远侧。进而,由于叶轮被连接到轴向轴杆,因此轴向轴杆向前移动。在收缩期过程中,叶轮(以及进而轴向轴杆)移回到其收缩期位置。以这种方式,叶轮和轴向轴杆的轴向往复运动以被动方式产生,即,不需要主动地驱动轴向轴杆和叶轮以使它们经历这种运动。图6A示出了设置在其典型收缩期位置的叶轮和轴向轴杆,并且图6B示出了设置在其典型舒张期位置的叶轮和轴向轴杆。
[0226] 对于一些应用,通过以轴向往复运动的方式移动,轴向轴杆的与近侧支承件116和远侧支承件118接触的部分不断变化。对于一些这样的应用,假设其余情况均相同,以这种方式,由支承件施加在轴向轴杆上的摩擦力比轴向轴杆不相对于支承件移动的情况分散在轴向轴杆的更大区域上,从而减少轴向轴杆上的磨损。可替代地或附加地,通过以相对于支承件往复运动的方式移动,轴向轴杆清除轴向轴杆与支承件之间的界面的任何残留物,例如血液残留物。
[0227] 对于一些应用,当框架34和叶轮50处于其非径向约束构型时(例如,当框架和叶轮部署在左心室内时),框架的长度超过叶轮的长度至少2mm(例如,至少4mm,或至少8mm)。典型地,近侧支承件116和远侧支承件118各自的长度为2mm‑4mm(例如,2mm‑3mm)。更典型地,叶轮和轴向轴杆被配置为至少沿着近侧支承件和远侧支承件中的每一者的长度或者至少沿着这些支承件中的每一者的长度的两倍在框架内往复运动地轴向移动。因此,在轴向轴杆的往复轴向运动期间,轴向轴杆在这些支承件中的每一者的任一侧被擦拭干净。
[0228] 对于一些应用,叶轮运动的范围如图6A‑图6B所示,其中图6A指示叶轮在心动周期过程中的最近侧布置(典型地,在收缩期过程中叶轮设置为该布置),并且图6B指示叶轮在心动周期过程中的最远侧布置(典型地,在舒张期过程中叶轮设置为该布置)。如图6A所示,对于一些应用,在叶轮的最近侧位置处,叶轮的近侧端部被设置在位置IP处,该位置IP在框架34的近侧锥形节段内。如图6B所示,对于一些应用,在叶轮的最远侧位置处,叶轮的远侧端部被设置在位置ID处,该位置ID在框架34的柱形节段的远侧端部处。出于本申请的目的,框架的从IP到ID的整个节段可以被认为是容纳叶轮,因为框架的该整个节段典型地在心动周期的至少一部分期间容纳叶轮的至少一部分。典型地,在整个心动周期过程中,叶轮的叶轮跨度最大的节段被设置在框架34的柱形部分内。然而,在心动周期的至少一部分期间,叶轮的近侧部分典型地被设置在框架的近侧锥形节段内。
[0229] 再次参考图6A和图6B,并且还参考图6C,图6C是根据本发明的一些应用的远侧末端元件107的放大示意图,远侧末端元件107包括心室辅助装置20的轴向轴杆接收管126和远侧末端部分120。典型地,远侧末端元件107是包括轴向轴杆接收管126和远侧末端部分120两者的单个集成元件。对于一些应用,远侧末端元件107被配置为是柔软的,使得远侧末端部分被配置为即使远侧末端部分与组织(例如,左心室的组织)接触,该远侧末端部分也不使受试者组织损伤。例如,远侧末端元件107可以由硅树脂、聚对苯二甲酸乙二醇酯(PET)和/或聚醚嵌段酰胺(例如, )制成。对于一些应用,远侧末端部分限定穿过其中的腔体122。对于一些这样的应用,在将心室辅助装置插入左心室期间,导引线10(图1B)首先根据例如已知技术被插入左心室。然后,通过在导引线上推进远侧末端部分,将心室辅助装置的远侧末端部分引导至左心室,其中导引线被设置在腔体122内。对于一些应用,鸭嘴阀390(或不同类型的止血阀)被设置在远侧末端部分120的腔体122的远侧端部处。
[0230] 典型地,在将心室辅助装置插入受试者的心室期间,递送导管143被放置在叶轮50和框架34之上,并且将叶轮和框架保持在其径向约束构型。对于一些应用,在将递送导管插入受试者的心室期间,远侧末端元件107从递送导管向远侧延伸。对于一些应用,在远侧末端元件的近侧端部处,远侧末端元件具有扩口部分124,该扩口部分124用作止动件并且防止递送导管被推进超过该扩口部分。
[0231] 应注意的是,图6A‑图6C(以及一些其他附图)中的远侧末端部分的外部形状被示出为限定完整的环扣,其中远侧末端部分的远侧端部(其内设置有鸭嘴阀390)跨越远侧末端部分的更近侧部分。典型地,由于具有穿过其中插入的导引线(在心室辅助装置插入左心室期间),远侧末端部分保持部分伸直,即使在导引线从远侧末端部分移除之后也是如此。典型地,远侧末端部分的部分伸直使得当远侧末端部分被设置在左心室内时,在没有外力作用在远侧末端部分上的情况下,远侧末端部分不限定完整的环扣,例如如图1B、图15D和图16A所示。对于一些应用,为了将导引线穿过远侧末端部分插入,使用了如以下例如参考图23A‑图23C进一步详细描述的矫直元件270。下面将进一步详细描述远侧末端部分形状的其他方面。
[0232] 现在参考图6D和图6E,它们是叶轮50的示意图,根据本发明的一些应用,叶轮的近侧衬套64联接到联接元件65,该联接元件65向近侧延伸,以便起到止动件的作用。图6D示出叶轮处于叶轮的运动周期的收缩阶段,并且图6E示出叶轮处于其运动周期的舒张阶段。通常,联接元件向近侧延伸,以防止叶轮的中央区域(在该中央区域,叶轮处于其最大跨度)向近侧滑动到框架34的近侧锥形部分中。例如,在叶轮运动周期的收缩阶段(在图6D中示出),如果叶轮进一步向近侧滑动超过给定量,则近侧延伸的联接元件将接触近侧径向支承件116,从而防止叶轮的进一步近侧运动。对于一些应用,联接元件向近侧延伸,使得其所具有的总长度大于1.5mm,例如大于4mm。对于一些应用(未示出),作为向近侧延伸的联接元件的替代或附加,单独的止动件元件在相对于联接元件的近侧设置在轴向轴杆上。典型地,止动件如参考近侧延伸的联接元件所描述的那样被配置。即,如果叶轮进一步向近侧滑动超过给定量,则止动件元件将接触近侧径向支承件116,从而防止叶轮的进一步近侧运动。
[0233] 现在参考图7A,其是根据本发明的一些应用的心室辅助装置20的马达单元23的分解视图的示意图。如所示,马达单元典型地是手柄,该手柄被配置为设置在受试者身体外并容纳马达。因此,马达单元可以替代地被称为手柄单元。
[0234] 对于一些应用,控制台21(图1A)的控制叶轮50旋转的计算机处理器25也被配置为控制轴向轴杆的往复运动。典型地,两种类型的运动都是使用马达单元23产生的。本发明的范围包括控制任何频率的往复运动。对于一些应用,检测受试者的心动周期的指示(例如,通过检测受试者的ECG),并且轴向轴杆的往复运动与受试者的心动周期同步。
[0235] 典型地,马达单元23包括马达74,该马达74被配置为经由驱动线缆130将旋转运动施加给叶轮50。如下文进一步详细描述的,典型地,马达磁耦合到驱动线缆。对于一些应用,轴向运动驱动器76被配置为驱动马达从而以轴向往复运动的方式(如双头箭头79所示)移动。典型地,由于马达与驱动线缆的磁耦合,马达将往复运动施加给驱动线缆,该驱动线缆进而将该运动施加给叶轮。如上文和下文所述,对于一些应用,驱动线缆、叶轮和/或轴向轴杆以被动方式进行轴向往复运动,例如,由于叶轮泵送血液所抵抗的压力梯度的周期性变化。典型地,对于这种应用,马达单元23不包括轴向运动驱动器76。
[0236] 对于一些应用,马达与驱动线缆的磁耦合如图7A所示。如图7A所示,至少一个以上的驱动磁体77(例如,两个驱动磁体77)经由驱动磁体壳体78联接到马达。对于一些应用,驱动磁体壳体包括环81(例如,钢环),并且驱动磁体粘附到环的内表面。对于一些应用,如所示的,垫片85在两个驱动磁体之间被粘附到环81的内表面。至少一个从动磁体82被设置在驱动磁体之间,使得驱动磁体和从动磁体之间存在轴向重叠。从动磁体联接到销131,该销131延伸超过从动磁体82的远侧端部,其中销被联接到驱动线缆130的近侧端部。例如,从动磁体可以是柱形的并且限定穿过其中的孔,并且销131可以被粘附到从动磁体的限定该孔的内表面。对于一些应用,从动磁体是柱形的,并且磁体包括北极和南极,北极和南极沿着柱体的长度沿着平分柱体的线83彼此分开,如所示。对于一些应用,从动磁体被容纳在柱形壳体87内。典型地,销131限定腔体133,经由该腔体133,导引线10穿过销被插入。
[0237] 注意,在图7A所示的应用中,驱动磁体被设置在从动磁体外。然而,本申请的范围包括反转驱动磁体和从动磁体的配置(经必要的修改)。例如,驱动线缆的近侧端部可以被联接到两个或更多个从动磁体,这些从动磁体围绕驱动磁体设置,使得在从动磁体与驱动磁体之间存在轴向重叠。
[0238] 如上所述,典型地,清洗系统29(如图1A所示)与心室辅助装置20一起使用。典型地,马达单元23包括入口端口86和出口端口88,以与清洗系统一起使用。对于一些应用,清洗流体经由入口端口86连续地或周期性地泵入到心室辅助装置中,并且经由出口端口88从心室辅助装置中泵出。清洗系统的其他方面将在下文描述。
[0239] 典型地,磁体82和销131被保持在马达单元23内的轴向相对固定位置。(对于一些应用,磁体82相对于马达单元的其他部件(例如驱动磁体77)确实具有较小的轴向和/或旋转运动自由度。对于一些应用,这种移动是可测量的,如下文进一步详细描述的。)典型地,驱动线缆的近侧端部联接到销131,并且由此相对于销保持在轴向固定位置。典型地,驱动线缆130从销131延伸到轴向轴杆92,并且从而至少部分地固定轴向轴杆的轴向位置,进而固定叶轮50。对于一些应用,驱动线缆某种程度上是可拉伸的。例如,驱动线缆可以由可拉伸的盘绕线制成,如下文进一步详细描述的那样。驱动线缆典型地允许轴向轴杆(进而叶轮)呈现一定范围的轴向位置(通过驱动线缆变得或多或少的拉伸),但是将轴向轴杆和叶轮的轴向运动限制在一定的运动范围内(通过将驱动线缆的近侧端部保持在轴向相对固定位置,并且驱动线缆的拉伸性受到限制)。
[0240] 现在参考图7Bi和图7Bii,这些图是根据本发明的一些应用的马达单元23的示意图。总体上,如图7Bi和图7Bii所示的马达单元23类似于图7A所示的马达单元,除非另有说明,否则如图7Bi和图7Bii所示的马达单元23包含与图7A所示的马达单元23类似的部件。对于一些应用,马达单元包括散热器90,该散热器90被配置为消散由马达产生的热量。可替代地或附加地,马达单元包括通风端口93,通风端口93被配置为有助于消散由马达产生的热量。对于一些应用,马达单元包括减振器94和96,减振器94和96被配置为衰减马达单元的由心室辅助装置的部件的旋转运动和/或轴向往复运动引起的振动。
[0241] 如上所述,对于一些应用,叶轮50和轴向轴杆92被配置为响应于作用在叶轮上的力而在框架34内轴向往复移动,而不需要主动地驱动轴向轴杆以轴向往复运动的方式移动。典型地,在受试者的心动周期过程中,左心室与主动脉之间的压差从收缩期过程中的近似零变化到舒张期过程中的相对大的压差(例如,50mmHg‑70mmHg)。对于一些应用,由于在舒张期过程中叶轮泵送所抵抗的压差增加(并且由于驱动线缆是可拉伸的),因此与叶轮在收缩期过程中相对于框架34的位置,叶轮在舒张期过程中相对于框架34被推向远侧。进而,由于叶轮被连接到轴向轴杆,因此轴向轴杆向前移动。在收缩期过程中,叶轮(以及进而轴向轴杆)移回到其收缩期位置。以这种方式,叶轮和轴向轴杆的轴向往复运动以被动方式产生,即,不需要主动地驱动轴向轴杆和叶轮以使它们经历这种运动。
[0242] 现在参考图8A,该图是表示心室辅助装置的驱动线缆的长度随心室辅助装置的叶轮所抵抗的压力梯度变化(如在由实验中所测得)而变化的图表。本文所述的叶轮和驱动线缆用于通过腔室泵送基于甘油的溶液,其中腔室被设置成重现左心室和主动脉,并且溶液具有与血液相似的性质(例如密度粘度)。叶轮泵送所抵抗的压力梯度以搏动的方式变化,以表示在叶轮将血液从左心室泵送到主动脉时叶轮典型地所抵抗的压力梯度的搏动。同时,驱动线缆的移动被成像,并且驱动线缆长度变化经由图像的分析来确定。图8A中所示的图表显示了所测得的驱动线缆长度随着压力梯度的变化。如图8A所示,随着叶轮泵送所抵抗的压力梯度的增加,驱动线缆变得越来越长。如图8A所示的结果和上文所述,典型的情况是,响应于叶轮泵送血液所抵抗的压力的变化(例如,左心室与主动脉之间的压差),叶轮相对于框架34往复移动。进而,叶轮的移动导致驱动线缆130变得或多或少伸长。
[0243] 对于一些应用,在心室辅助装置的运行期间,控制台21(图1A)的计算机处理器25被配置为通过测量驱动线缆130中的张力和/或驱动线缆的轴向运动的示值来测量施加在叶轮上的压力的示值(其指示左心室与主动脉之间的压差)。对于一些应用,基于测量到的示值,计算机处理器检测受试者的心动周期中的事件,确定受试者的左心室压力,和/或确定受试者的心脏后负荷。对于一些应用,计算机处理器控制叶轮的旋转,和/或响应于此控制轴向轴杆的轴向往复运动。
[0244] 再次参考图7A,对于一些应用,心室辅助装置20包括传感器84。例如,传感器可以包括被设置在马达单元23内的磁力计(例如霍尔传感器),如图7A所示。(在一些情况下,传感器84被称为磁力计84。)对于一些应用,情况是,由于从动磁体通过磁耦合而不是刚性机械联接相对于驱动磁体保持在适当位置,因此叶轮的轴向往复运动引起内部从动磁体82相对于外部一个或更多个驱动磁体77的可测量的往复运动。注意,典型地,磁体的轴向运动基本上小于叶轮的轴向运动,因为叶轮的整个运动范围没有沿着驱动线缆的长度传递。对于一些应用,磁力计测量由磁体之一产生的磁场的变化,以便测量驱动线缆130的轴向运动,并且进而确定叶轮泵送所抵抗的压力。例如,内部从动磁体82可以比外部驱动磁体77在轴向上更长。由于内部磁体比外部磁体长,所以从内部磁体发出的磁场线不会传递到外部磁体,并且由磁力计测量的、由这些场线产生的磁通量由于驱动线缆而变化,并且进而使得内部磁体轴向移动。在运行期间,马达74旋转,从而在磁力计中产生AC信号,其所具有的频率典型地介于200Hz与800Hz之间。典型地,当驱动线缆中的张力由于受试者的心动周期而改变时,这在由磁力计测量的信号中产生低频包络,该低频包络典型地具有0.5Hz‑2 Hz的频率。对于一些应用,计算机处理器测量低频包络,并且从测量到的包络中导出受试者的心动周期。
[0245] 对于一些应用,磁力计测量结果初始被校准,使得叶轮泵送所抵抗的每单位压力变化的磁通量变化(即,左心室与主动脉之间的压差的每单位变化,或压力梯度的每单位变化)是已知的。已知,在大多数受试者中,在收缩期,左心室压力等于主动脉压力。因此,对于一些应用,测量受试者的主动脉压力,并且然后受试者在给定时间的左心室压力由计算机处理器基于以下计算:(a)所测量的主动脉压力,以及(b)当时由磁力计测量的磁通量和在收缩期间(当左心室中的压力被假设为等于主动脉的压力时)由磁力计测量的磁通量之间的差值。例如,受试者的主动脉压力可以通过测量由递送导管143限定的通道224中的压力来测量,如下文进一步详细描述的。对于一些应用,使用上述技术来确定替代的或附加的生理参数。例如,可以确定受试者的心动周期中的事件和/或受试者的心脏后负荷。
[0246] 对于一些应用,通常使用与上段中描述的技术相似的技术,但是作为利用磁力计测量的替代或补充,测量不同的参数以确定给定时间的左心室血压(和/或不同的生理参数,例如受试者的心动周期中的事件和/或受试者的心脏后负荷)。例如,典型的情况是,在以给定旋转速率驱动叶轮旋转所需的功率(和/或电流)量与由叶轮产生的压差之间存在关系。(注意,由叶轮产生的压差中的一部分被用来克服叶轮泵送所对抗的压力梯度,而由叶轮产生的压差中的一部分通过在左心室和主动脉之间产生一个正压差从而被用来主动将血液从左心室泵送到主动脉。此外,典型地上述部件之间的关系在心动周期的过程中发生变化。)对于一些应用,执行校准测量,使得(a)以给定旋转速率旋转叶轮所需的马达功率(和/或电流)消耗与(b)由叶轮产生的压差之间的关系是已知的。对于一些应用,测量受试者的主动脉压力,并且由计算机处理器基于(a)测量到的主动脉压力,(b)在给定时间以给定旋转速率旋转叶轮所需的马达功率(和/或电流)消耗,以及(c)以给定旋转速率旋转叶轮所需的马达功率(和/或电流)消耗与由叶轮产生的压差之间的预定关系,来计算在给定时间时受试者的左心室压力。对于一些应用,上述技术是在保持叶轮旋转速率是恒定速率的情况下执行的。可替代地或附加地,叶轮的旋转速率是变化的,并且在上述计算中考虑了叶轮旋转速率的变化。对于一些应用,使用上述技术来确定替代的或附加的生理参数。例如,可以确定受试者的心动周期中的事件和/或受试者的心脏后负荷。
[0247] 典型地,管24具有已知的截面面积(当管由于血液流过管而处于打开状态时)。对于一些应用,由叶轮产生的通过管24的流量基于由叶轮产生的确定的压差和管的已知的截面面积来确定。对于一些应用,这种流量计算结合了校准参数,以便考虑诸如流动阻力的因素,这些因素对应计算所执行的心室辅助装置(或心室辅助装置的类型)是特定的。对于一些应用,基于确定的心室压力导出心室压力‑容积环。
[0248] 再次参考图7A,对于一些应用,除了被配置为测量由从动磁体产生的磁通密度的磁力计84,第二磁力计84A(例如,第二霍尔传感器)测量由驱动磁体产生的磁通密度的示值。对于一些应用,第二磁力计测量马达的磁通密度,它指示驱动磁体的磁通密度循环,因为马达直接驱动驱动磁体旋转。典型地,当叶轮旋转如泵送血液时,在叶轮上产生转矩。进一步典型地,转矩的强度依赖于各种参数,例如由叶轮产生的流量、叶轮的旋转速率和/或叶轮泵送所抵抗的压力梯度。对于一些应用,在叶轮上产生的转矩在内部从动磁体82上相对于外部驱动磁体77产生可测量的转矩,因为从动磁体通过磁耦合而不是刚性机械联接而相对于驱动磁体保持在适当的位置。注意到,典型地在从动磁体上产生的转矩比在叶轮上产生的转矩小得多,因为在叶轮上产生的转矩不沿驱动线缆的长度传递。然而,典型的情况是,在叶轮上产生的转矩至少部分地经由驱动线缆传递到从动磁体。
[0249] 传递到从动磁体的转矩典型地引起由磁力计84(其测量从动磁体的磁通密度)测量的信号与由第二磁力计84A(其测量马达和/或驱动磁体的磁通密度)测量的信号之间的相位差。对于一些应用,当叶轮上的转矩变化时,这引起由磁力计84测量的信号和由第二磁力计84A测量的信号之间的相位差的变化。对于一些应用,计算机处理器检测上述相位差的变化,并至少部分响应于上述相位差的变化来确定受试者的生理参数。例如,至少部分地基于相位差中的变化,计算机处理器可以确定受试者的左心室压力与受试者的主动脉压力之间的差、受试者的左心室压力、受试者的心动周期中的事件、受试者的心脏后负荷和/或不同的生理参数。对于一些应用,本段落中描述的技术被用作上述技术的替代,用于使用磁通密度测量和/或功率消耗测量来确定生理参数。可替代地,这些技术中的两个或更多个相互结合使用。例如,可以基于包含两个或更多测量的数学模型来确定受试者的生理参数,和/或可以使用所述技术中的一个来验证使用所述技术中的另一个进行的对受试者的生理参数的估计。
[0250] 现在参考图8B和图8C,它们根据本发明的一些应用,展示了相位差信号和叶轮50泵送所抵抗的压力梯度之间的相关性的图表。
[0251] 图8B中所示的图表显示了实验的结果,在该实验中,如本文所述的心室辅助装置被用于在静态体外系统内抵抗相应的压力梯度泵送血液(即,当进行每次测量时,压力梯度是恒定的)。根据相位差信号、磁通振幅信号和马达消耗的电流,采用线性回归模型估计叶轮泵送所抵抗的压力梯度。图8B所示的图表示出了估计的压力梯度与测量的压力梯度的关系。如图所示,结合相位差测量的线性回归模型为估计叶轮泵送所抵抗的压力梯度提供了可靠的方法。
[0252] 图8C中所示的图表显示了实验的结果,在该实验中,如本文所述的心室辅助装置被用于在静态体外系统内抵抗相应的压力梯度泵送血液(即,在其中压力梯度以搏动方式变化)。根据相位差信号、磁通振幅信号和马达消耗的电流,采用空间状态模型估计叶轮泵送所抵抗的压力梯度。图8C所示的图表示出了叠加在测量压力梯度上的估计压力梯度。如图所示,结合相位差测量的空间状态模型为估计叶轮泵送所抵抗的压力梯度提供了可靠的方法。
[0253] 根据上述,并根据本发明的一些应用,测量一个或更多个从动磁体和一个或更多个驱动磁体之间的磁相位差,并且至少部分响应于该磁相位差来确定受试者的生理参数。例如,至少部分地基于相位差中的变化,计算机处理器可以确定受试者的左心室压力与受试者的主动脉压力之间的差、受试者的左心室压力、受试者的心动周期中的事件、受试者的心脏后负荷和/或不同的生理参数。对于一些应用,生理参数是基于相位差测量与一个或更多个附加测量相结合来确定的,例如磁通振幅测量、马达消耗的功率和/或马达消耗的电流。典型地,这样的测量被组合在数学模型中,例如线性回归模型,和/或空间状态模型。
[0254] 现在参考图9A‑图9G,它们是根据本发明的一些应用被配置为将马达单元23支撑在患者腿172上的马达单元支撑件170的各个视图的示意图。对于一些应用,心室辅助装置经由股骨接入点173插入患者体内,并且马达单元支撑件被配置为放置在股骨接入点下方的患者大腿上,如图所示。典型地,马达单元支撑被配置为在马达单元的运行期间至少部分地将患者的腿与由马达单元产生的振动和/或热隔离开来。
[0255] 对于一些应用,马达单元支撑件包括弯曲的基座176,基座176被配置为放置在患者的大腿上,以及马达单元停靠在其上的马达单元坞178。典型地,在马达单元坞和马达单元支撑件的弯曲的基座之间存在间隙179,使得患者的腿通过该间隙与马达单元分开,该间隙用于在马达单元运行期间至少部分地将患者的腿与马达单元产生的振动和/或热隔离开来。对于一些应用,马达单元支撑件被配置为通过间隙接收带174,该带用于将马达单元支撑件绑到患者的腿。典型地,带是弹性的和/或可调节的,以适合患者的腿。
[0256] 通常,马达单元支撑件包括用于将马达单元坞联接到马达单元的联接元件180(例如,在图9D中示出)。如上所述,对于一些应用,马达单元包括通风端口93,通风端口93被配置为有助于消散由马达产生的热量。对于一些这样的应用,联接元件包括卡扣配合联接元件,例如,如图9E所示,卡扣配合联接元件被配置为通过联接元件卡扣到马达单元的通风端口中来将马达单元坞联接到马达单元。对于一些应用,马达单元包括在马达单元两侧的通风端口,使得马达单元的任一侧都可以联接到马达单元坞。
[0257] 现在参考图10A、图10B和图10C,这些图是根据本发明的一些应用的心室辅助装置20的驱动线缆130的示意图。典型地,马达的旋转运动经由驱动线缆传递到轴向轴杆。典型地,驱动线缆从马达单元23(其典型地设置在受试者体外)延伸到轴向轴杆92的近侧端部(例如,在图5A的左侧放大部分中示出了驱动线缆的远侧端部和轴向轴杆的近侧端部之间的连接)。对于一些应用,驱动线缆包括多根线134,这些线以盘绕构型设置,以便赋予驱动线缆足够的强度和柔性,使得线缆的一部分能够保持在主动脉弓内(例如,对应于图10A中的箭头145的部分),同时线缆旋转并以轴向往复运动的方式移动。对于一些应用,驱动线缆包括多个同轴的盘绕线层。例如,如图10A‑图10C所示,驱动线缆可以包括外层136和内层
138,它们彼此同轴,并且每一层都包括盘绕线。
[0258] 典型地,驱动线缆被设置在第一外管140内,该第一外管140被配置为在驱动线缆经历旋转和/或轴向往复运动时保持静止。第一外管被配置为有效地充当沿着驱动线缆长度的驱动线缆的支承管。因此,第一外管在本文也被称为驱动线缆支承管。下面将参考图10D进一步详细地描述驱动线缆支承管。对于一些应用,驱动线缆支承管设置在第二外管
142内,第二外管142典型地由具有比驱动线缆支承管更大柔性的材料(例如,尼龙和/或聚醚嵌段酰胺)制成,并且典型地具有比驱动线缆支承管更大的厚度。
[0259] 典型地,在将叶轮和框架插入左心室期间,叶轮50和框架34由递送导管143保持在径向约束构型。如上所述,为了使叶轮和框架呈现非径向约束构型,递送导管被缩回。对于一些应用,如图10A所示,在左心室装置的运行期间,递送导管保持在受试者的主动脉中,并且外管142被设置在递送导管内侧。(尽管图10A示出了递送导管的远侧端部设置在主动脉弓内,但对于一些应用,在左心室装置的运行期间,递送导管的远侧端部设置在降主动脉内。)对于一些应用,在左心室装置的运行期间,在递送导管143和外管142之间限定通道224。(要注意的是,出于说明的目的,图10A中所示的通道不是按比例的。)对于一些这样的应用,通过测量通道224内的血液压力来测量受试者的主动脉血压。例如,压力传感器216(在图1A中示意性地示出)可以是与通道224流体连通,并可以被配置为通过测量通道224内的血液压力来测量受试者的主动脉压力。典型地,为了将左心室装置从受试者体内缩回,递送导管在叶轮和框架之上推进,使得叶轮和框架呈现它们的径向约束构型。然后将导管从受试者体内抽出。
[0260] 对于一些应用,驱动线缆130由多个同轴层构成,每个同轴层包括多个盘绕线134。例如,如图10A‑图10C所示,驱动线缆包括外层136和内层138,每一层包括盘绕线。典型地,当叶轮的旋转开始时,如果叶轮的旋转方向使得驱动线缆在该方向上的旋转导致驱动线缆的盘绕线至少部分地收紧,那么这也将导致叶轮相对于框架推进,这是由于盘绕线收紧(即,缠绕使得线圈的半径减小)并且从而轴向伸长所导致的。对于一些应用,驱动线缆的至少一部分被配置为使得(a)响应于叶轮通过在预定的旋转方向上旋转而将血液从左心室泵送到主动脉,(b)驱动线缆在该方向上的旋转导致驱动线缆的盘绕线沿着驱动线缆的部分至少部分地退绕,使得驱动线缆的该部分轴向缩短(例如,变得松散,从而使线圈的半径增加)。对于一些应用,叶轮被配置为当从叶轮的近侧端部向叶轮的远侧端部观察时在逆时针方向上旋转,并且每一层驱动线缆中的盘绕线被配置为左手放置。当叶轮沿逆时针方向旋转时,施加在驱动线缆的每一层的盘绕线上的反压力使它们部分地退绕,从而缩短驱动线缆的每一层。可替代地,叶轮被配置为当从叶轮的近侧端部向叶轮的远侧端部观察时在顺时针方向上旋转,并且驱动线缆的每一层中的盘绕线被配置为右手放置。
[0261] 再次参考图6A和6B,它们显示根据本发明的一些应用,在心动周期过程中,叶轮在框架34内的轴向往复运动的范围。如上所述,图6A指示叶轮在心动周期过程中的最近侧布置(典型地,在收缩期过程中叶轮设置为该布置),并且图6B指示叶轮在心动周期过程中的最远侧布置(典型地,在舒张期过程中叶轮设置为该布置)。如图6A所示,对于一些应用,在叶轮的最近侧位置处,叶轮的近侧端部被设置在位置IP处,该位置IP在框架34的近侧锥形节段内。如图6B所示,对于一些应用,在叶轮的最远侧位置处,叶轮的远侧端部被设置在位置Id处,该位置Id在框架34的柱形节段的远侧端部处。
[0262] 再次参考图10A‑10C和参考这些图描述的驱动线缆的构型,典型地,通过以上述方式配置驱动线缆,当叶轮和驱动线缆开始旋转时,框架34的长度不需要适应由于装置线缆紧固而导致驱动线缆轴向伸长而引起的叶轮的远侧运动。注意,对于一些应用,由于驱动线缆支承管140限制了驱动线缆能够退绕并由此轴向缩短的程度(和/或由于其他原因),驱动线缆不缩短。此外,对于一些应用,虽然理论上,如果叶轮在没有任何流体的情况下旋转,驱动线缆会缩短,但实际上,当叶轮在受试者的血流中旋转时,驱动线缆不会缩短。这是因为,当叶轮在受试者的血流中旋转时,由于叶轮泵送的血液的反压而将叶轮向远侧推,从而抵消了驱动线缆的退绕(这将导致驱动线缆缩短)。对于一些应用,在舒张期间,由于叶轮泵送所抵抗的压力梯度相对于收缩期间增加,驱动线缆实际上相对于叶轮静止时变长。典型地,即使在这样的应用中,至少在收缩期间,由于对线圈的缠绕被如上所述地配置,驱动线缆被配置为相对于叶轮静止时不会变得伸长。
[0263] 对于一些应用,除了以上述方式配置驱动线缆内的盘绕线的方向之外,驱动线缆最初以预加载(即,预张紧)状态保持在框架34内,使得即使在驱动线缆和叶轮开始旋转之前,驱动线缆已经被拉伸。也就是说,即使在驱动线缆和叶轮开始旋转之前,驱动线缆相对于驱动线缆静止状态(即,在没有任何外力作用在驱动线缆上的情况下驱动线缆的状态)处于拉伸状态。例如,联接元件65(在一些应用中,其向近侧延伸,如上文参考图6D‑图6E所述)可以接合近侧支承件116,例如以将驱动线缆保持在预加载状态。典型地,(a)由于驱动线缆内的盘绕线的方向以上述方式配置,和/或(b)由于驱动线缆在预加载状态下保持在框架34内,在这种情况下,当叶轮和驱动线缆开始旋转时,即使在舒张期间(例如,即使当叶轮抵抗50‑70mmHg的压力梯度泵送时),驱动线缆也不会变得伸长。对于一些应用,即使在舒张期间,驱动线缆也不会变得伸长,直到叶轮以超过6,000RPM或超过8,000RPM的旋转速率旋转。
对于一些应用,通过以这种方式配置驱动线缆,即使当叶轮以超过20,000RPM旋转时,驱动线缆在心动周期过程中变长的量也被限制在小于5mm(并且典型地小于4mm)。此外,对于一些应用,通过以这种方式配置驱动线缆,叶轮的最宽部分(典型地位于叶轮的长度的中心处)在心动周期持续时间的50%以上被设置在框架34的近侧半部内,即使当叶轮以超过20,
000RPM旋转时也是如此。
[0264] 对于一些应用,心室辅助装置被配置为,即使在舒张期间,即使当叶轮以超过20,000RPM旋转时,叶轮处于其最大直径处的叶轮位置与血液入口开口之间存在轴向距离。例如,心室辅助装置被配置为使得在舒张期间,即使当叶轮以超过20,000RPM旋转时,在叶轮处于其最大直径处的叶轮位置与血液入口开口之间存在超过3mm(例如,超过5mm)的轴向距离。对于一些这样的应用,这减少了溶血(相对于如果在叶轮处于其最大直径处的叶轮位置与血液入口开口之间存在更小的轴向距离或没有轴向距离)和/或通过减少湍流来提高叶轮的功效,通过允许进入血液入口开口的血液流线在被叶轮泵送之前变得至少部分地与叶轮的纵向轴线对准。
[0265] 典型地,在驱动线缆的外层136内存在比内层138内少的盘绕线,并且每根线比内层内的线宽。例如,外层内的线数量与内层内的线数量之比可以在2:3至2:5之间。对于一些应用,外层包含4‑8根线,而内层包含10‑14根线。对于一些应用,外层内的线直径与内层内的线直径之比在3:2至5:2之间。对于一些应用,外层内的线直径在0.15mm至0.2mm之间,而外层内的线直径在0.075mm至0.125mm之间。典型地,两层的盘绕线都是由合金制成的。对于一些应用,驱动线缆的内径(即,腔体132的直径)在0.4mm和0.7mm之间。进一步典型地,驱动线缆的外径(由外层138限定)在1mm和1.2mm之间。对于一些应用,驱动线缆130所具有的总长度大于1m(例如,大于1.1m),和/或小于1.4m(例如,小于1.3m),例如,1‑1.4m,或1.1‑1.3m。典型地,腔体122和腔体133的直径大致上类似于腔体132的直径。
[0266] 对于一些应用,驱动线缆包括第一(远侧)部分和第二(近侧)部分。典型地,第一部分被配置为设置在受试者的主动脉弓中,而第二部分被配置为沿着降主动脉设置,并且典型地延伸到马达单元23,在受试者体外。典型地,在驱动线缆130进行显著弯曲的位置处,诸如主动脉弓处,期望的是驱动线缆是相对柔性的。然而,具有较大柔性的驱动线缆典型地也比具有较小柔性的驱动线缆更能轴向拉伸。因此,对于一些应用,在希望驱动线缆足够柔性以符合主动脉弓的曲率,但另一方面又不希望驱动线缆进行显著轴向拉伸(这可能导致对叶轮的轴向位置失去控制)之间存在权衡。对于一些应用,驱动线缆的相应部分具有相应的柔性程度。例如,驱动线缆的被配置为设置在主动脉弓中的第一部分可以具有第一柔性,同时驱动线缆的被配置为设置在降主动脉中的第二部分可以具有第二柔性,第一柔性大于第二柔性。
[0267] 对于一些应用,驱动线缆的远侧部分被配置为比近侧部分具有更大的柔性,这是由于远侧部分中的线134的线圈具有与近侧部分中使用的那些不同的参数。对于一些应用,远侧部分具有与上面描述(即,关于内层和外层)的参数大致上相似的参数。对于一些应用,导引线的近侧部分包括单层盘绕线。典型地,在驱动线缆的近侧部分内的盘绕线比在驱动线缆的远侧部分的外层内的盘绕线少。典型地,在驱动线缆的远侧部分的外层中的线数量与在驱动线缆的近侧部分中的线数量之比在3:2和5:2之间。对于一些应用,在驱动线缆的近侧部分有3到6根线。典型地,在驱动线缆的近侧部分内的盘绕线的直径甚至大于在驱动线缆的远侧部分的外层内的盘绕线的直径。对于一些应用,近侧部分内的线直径与远侧部分外层内的线直径之比在3:2至5:2之间。对于一些应用,驱动线缆远侧部分内的线直径在0.2mm和0.35mm之间。典型地,驱动线缆的远侧部分和近侧部分两者的内径和外径彼此相似(或相同),并且典型地如上文所述。
[0268] 现在参考图10D,它是根据本发明的一些应用的第一外管140的示意图,该第一外管充当驱动线缆支承管。对于一些应用,驱动线缆支承管包括外层141和内层144,每一层典型地由生物相容性聚合物材料制成,以及嵌入在外层和内层之间的线圈153。对于一些应用,外层141由Pebax制成,内层144由PTFE和/或聚酰亚胺(例如,PTFE和/或聚酰亚胺的混合物)制成,线圈由合金(例如不锈钢)制成。典型地,内层包括被配置为提供低摩擦平和高耐磨性的材料。此外,典型地,外层被配置为向驱动线缆支承管提供额外的强度,同时仍然向驱动线缆支承管提供足够的柔性,以使其能够与例如主动脉弓的曲率相一致。典型地,线圈被配置为使得即使在驱动线缆支承管经历显著弯曲的区域内(例如,在主动脉弓内),也保持驱动线缆支承管的基本上圆形截面。典型地,在没有线圈的情况下,驱动线缆支承管将具有扁平的趋势,并在这些区域内形成椭圆形截面。
[0269] 现在参考图11A、图11B、图11C、图11D和图11E,它们是根据本发明的一些应用的用于清洗心室辅助装置20的驱动线缆130、径向支承件116、118和/或叶轮衬套58的设备和方法的示意图。
[0270] 首先,参考图11A,典型地,轴向轴杆和驱动线缆限定穿过其的连续腔体132。对于一些应用,左心室装置通过将轴向轴杆和线缆放置在导引线10之上(如上所述),使得导引线被设置在腔体132内而被引导至主动脉和左心室。典型地,导引线被插入,穿过设置在远侧末端元件107的远侧末端部分的远侧端部处的鸭嘴阀390(或其他止血阀)。导引线穿过(远侧末端部分的)腔体122,然后进入到由轴向轴杆在该点处限定的腔体132中。然后,导引线继续一直穿过腔体132,直到驱动线缆的近侧端部。导引线从驱动线缆的近侧端部穿过由销131限定的腔体133,即使在心室辅助装置20的远侧端部插入受试者的左心室之后,该腔体133也被设置在受试者体外。典型地,当心室辅助装置的远侧端部被设置在受试者的左心室内侧时,通过将导引线拉出腔体133的近侧端部,导引线从受试者体内缩回。随后,从动磁体82(销131设置在其内)的轴向位置被固定,以便被设置在驱动磁体77之间,如图7A所示。例如,马达单元23的其中设置有从动磁体的一部分可以使用卡元件150(如图11B所示)联接到马达单元的其中设置有驱动磁体77的一部分。对于一些应用,如下文参考图23A‑图23C所述的技术用于将导引线插入远侧末端元件107中。对于一些应用,通过以上述方式使用轴向轴杆和线缆的腔体132,没有必要提供在插入左心室辅助装置20期间使用的额外的导引线引导件。
[0271] 对于一些应用,腔体132额外地由心室辅助装置的清洗系统29(如图1A所示)使用。典型地,在驱动线缆旋转期间,第一外管140和第二外管142两者都保持静止。对于一些应用,清洗系统29经由入口端口86和出口端口88(在图7A‑图7Bii、图11B和图11C中所示)控制清洗流体(例如,含有葡萄糖或右旋糖的流体)的流动。流体被配置为从驱动线缆与外管之间的空间移除空气,和/或减少驱动线缆130(其旋转)与外管140(其在驱动线缆旋转期间保持静止)之间的摩擦力,和/或减少轴向轴杆92与近侧支承件116和/或远侧支承件118之间的摩擦力。
[0272] 再次参考图11A,对于一些应用,清洗流体在第一外管140与第二外管142之间被泵送,并且在近侧支承件附近的第一外管内有开口146。对于一些应用,清洗流体通过限定在第一外管和第二外管之间的清洗流体通道226泵送,如下文参考图21进一步详细描述。对于一些应用,清洗流体经由开口146在第一外管140与驱动线缆130之间流动,如图11A中的清洗流体流动箭头148所示。以这种方式,驱动线缆130(其旋转)与外管140(其作为驱动线缆支承管并在驱动线缆旋转期间保持静止)之间的界面被清洗。对于一些应用,一些清洗流体额外地流到轴向轴杆与近侧支承件116之间的界面,从而清洗该界面(和/或减少该界面处的摩擦力),如图11A中的清洗流体流动箭头149所示。典型地,清洗流体沿箭头149方向的流动也阻止血液流入轴向轴杆与近侧支承件之间的界面。
[0273] 如上文所述(参考图10A‑图10C),驱动线缆典型地包括多根盘绕线。对于一些应用,清洗流体经由盘绕线中的间隙进入到由驱动线缆限定的腔体132中。一旦清洗流体被设置在腔体132内,清洗流体就在近侧方向和远侧方向上流动,如图11A的箭头151所示。如图11A的箭头152所示,沿远侧方向流动的清洗流体典型地流出腔体132的远侧端部并且流向由远侧末端部分限定的腔体122。在远侧末端部分的端部,典型地通过鸭嘴阀390防止清洗流体流出远侧末端部分。因此,一些清洗流体典型地流向轴向轴杆与远侧支承件118之间的界面,从而清洗该界面(和/或减少该界面处的摩擦力),如图11A中的清洗流体流动箭头154所示。典型地,清洗流体沿箭头154方向的流动也防止血液流入轴向轴杆与远侧支承件之间的界面。
[0274] 如上所述,一旦清洗流体被设置在腔体132内,清洗流体就沿近侧方向和远侧方向两者流动,如图11A的箭头151所示。现在参考图11B,典型地,在心室辅助装置20的近侧端部处,清洗流体沿箭头156的方向流出腔体132的近侧端部,并且随后流出由销131限定的腔体133的近侧端部。对于一些应用,清洗流体随后沿箭头157的方向并且围绕从动磁体流动,以减少从动磁体82受到的摩擦力。对于一些应用,清洗流体随后沿箭头158的方向流出出口端口88。典型地,随后清洗流体被处理掉。可替代地,清洗流体经由入口端口86被泵回到装置中。
[0275] 参考以上对典型地用于心室辅助装置20的清洗过程的描述,应注意,腔体122、132和133(如上文所述,其先前用于促进装置在导引线10之上的插入)典型地在心室辅助装置的使用期间用作清洗流体的流动通道。
[0276] 现在参考图11C,对于一些应用,心室辅助装置包括附加的清洗流体入口端口89,其典型地用于将清洗流体泵入到递送导管143与外管142之间的通道224中。对于一些应用,清洗流体以足够低的压力被泵入到该通道中,使得仍然可以经由该通道检测主动脉血压,如本申请中其他部分所述。对于一些应用,不是连续地将清洗流体泵入到通道224中,而是周期性地将流体泵入到该通道中,以便冲洗该通道。对于一些应用,端口89和通道224用于主动脉压力感测。例如,压力传感器216(其在图1A中示意性示出)可以设置在通道224内、端口89内和/或与通道224流体连通的不同位置。
[0277] 参考图11D和图11E,对于一些应用,轴向轴杆92包括清洗流体孔,该清洗流体孔被配置为允许清洗流体从由轴向轴杆92限定的腔体132流出。对于一些应用,轴向轴杆在叶轮50的远侧衬套58附近限定清洗流体孔190。如上文所述,对于一些应用,远侧衬套被配置为相对于轴向轴杆是可滑动的。对于一些这样的应用,远侧衬套和轴向轴杆之间的界面被从清洗流体孔190流出的清洗流体清洗。对于一些应用,轴向轴杆在远侧径向支承件118附近限定孔192。对于一些这样的应用,远侧径向支承件和轴向轴杆之间的界面被从清洗流体孔
192流出的清洗流体清洗。对于一些应用,轴向轴杆在近侧径向支承件116附近限定孔194。
对于一些这样的应用,远侧径向支承件和轴向轴杆之间的界面被从清洗流体孔194流出的清洗流体清洗。
[0278] 现在参考图12A和图12B,它们是心室辅助装置20的示意图,根据本发明的一些应用,该装置包括内衬39,内衬39衬在容纳叶轮50的框架34的内部。(出于说明的目的,在装置面向页面外的一侧上的内衬39和泵出口管24在图12A‑图12B中显示为透明的。)对于一些应用,内衬39设置在框架34内,以便提供平滑的内表面,血液通过该内表面被叶轮泵送。典型地,通过提供光滑的表面,相对于在叶轮和框架34的支柱之间泵送血液,覆盖材料减少了由叶轮泵送血液引起的溶血。对于一些应用,内衬包括聚氨酯、聚酯和/或硅树脂。可替代地或附加地,内衬包括聚对苯二甲酸乙二醇酯(PET)和/或聚醚嵌段酰胺
[0279] 典型地,内衬被设置在框架34的柱形部分的至少内表面之上(例如,柱形部分在图12A‑图12B中示出)。对于一些应用,泵出口管24还覆盖框架34的柱形部分38,例如围绕框架的外侧,使得泵出口管24和内衬39在内衬长度的至少50%上重叠,例如在框架34的柱形部分的整个长度上重叠,例如,如图12A所示。对于一些应用,在泵出口管24和内衬39之间只有部分重叠,例如,如图12B所示。例如,泵出口管24可以沿着小于内衬长度的50%(例如,小于
25%)与内衬重叠。对于一些这样的应用,在将心室辅助装置20插入受试者体内期间,叶轮在框架34内向远侧推进,使得叶轮不被设置在泵出口管与内衬之间的重叠区域内,从而不存在叶轮、泵出口管24、框架34和内衬39全部都彼此重叠的纵向位置。如上所述,参考图1D,对于一些应用,泵出口管24延伸到框架的远侧锥形部分40的端部,并且泵出口管限定多个侧向血液入口开口。对于一些这样的应用,框架的柱形部分衬有内衬39。
[0280] 典型地,在内衬39与泵出口管24之间的任何重叠区域上,内衬被成形为形成光滑的表面(例如,为了减少溶血,如上所述),并且泵出口管24被成形为与框架34的支柱相一致(例如,如图12A的截面所示)。典型地,在内衬39与泵出口管24之间的重叠区域上,泵出口管和内衬例如经由真空、经由粘合剂和/或使用热成型工艺彼此联接,例如如下所述。
[0281] 对于一些应用,内衬39和泵出口管24由不同的材料制成。例如,内衬可以由聚氨酯制成,而泵出口管可以由聚醚嵌段酰胺 制成。典型地,制造内衬的材料比制造泵出口管的材料具有更高的热成型温度。对于内衬和泵出口管沿着框架34的至少一部分(例如,沿着框架34的柱形部分)重叠的一些应用,泵出口管和内衬以下列方式彼此结合和/或结合到框架。最初,将内衬放置在芯轴之上。随后,将框架放置在内衬之上。随后,围绕框架的外侧放置泵出口管24。对于一些应用,为了使泵出口管24模制成与框架34的支柱相一致,而不导致内衬变形,框架被加热到的温度高于泵出口管24的热成型温度但低于内衬39的热成型温度。典型地,使用芯轴从框架内侧加热框架。典型地,当框架被加热到上述温度时,外管(其典型地由硅树脂制成)向泵出口管24施加压力,从而导致泵出口管24被径向向内推压,以便使泵出口管与框架的支柱的形状相一致,如图12A的截面所示。对于一些应用,框架、内衬、以及泵出口管24的围绕框架设置的部分的组合随后使用本领域已知的定形技术定形为期望的形状和尺寸。
[0282] 对于一些应用(未示出),在框架的柱形部分的远侧端部处,框架的支柱的密度大于支柱在框架的柱形部分的其他部分内的密度。对于一些这样的应用,在框架的柱形部分的远侧端部处,框架的支柱的增加的密度有助于将内衬和/或泵出口管结合到框架。对于一些应用,内衬和/或泵出口管并不一直延伸到框架的柱形部分的端部,例如,如参考图13所述。对于一些这样的应用,在沿框架的柱形部分的纵向位置处,内衬和/或泵出口管结束于此纵向位置处,框架的支柱的密度相对于沿框架的柱形部分的其他位置增加。
[0283] 现在参考图13,它是根据本发明的一些应用的心室辅助装置20的示意图,其中框架34的柱形部分38的至少远侧部分333未被覆盖。对于一些应用,在叶轮的轴向往复运动循环的过程中,即使当叶轮设置在框架34内的最远位置处时,叶轮的在叶轮最大跨度处的部分也不会前进超过框架的柱形部分内的给定位置(例如,如上文参考图10A‑图10C所述)。对于一些应用,框架的一部分(其向远侧设置在该位置之外)不被泵出口管24或内衬39覆盖。(注意,出于说明的目的,框架在没有内衬39的情况下被示出。然而,对于一些应用,框架衬有内衬39。典型地,即使在这样的应用中,框架的柱形部分的远侧部分333不被泵出口管24或内衬39覆盖。)
[0284] 对于一些应用,框架的柱形部分的未被覆盖的远侧部分起到实际加宽入口的作用,因为(如图13中的血流箭头所示)血液从框架的柱形部分的侧面流入框架的柱形部分。对于一些应用,这减少了由叶轮泵送血液产生的溶血。可选地或附加地,通过使框架的柱形部分的一部分未被覆盖,当泵部分处于其径向约束构型时,泵部分27的直径可以减小。例如,泵部分可以被径向约束,使得叶轮的最宽部分与框架的柱形部分的未被覆盖部分重叠,以便减小心室辅助装置的泵部分的直径(相对于如果叶轮的最宽部分与框架的柱形部分的覆盖部分重叠,使得叶轮的最宽部分与框架以及覆盖材料重叠)。
[0285] 对于一些应用,心室辅助装置被配置为即使在舒张期期间,在叶轮处于其最大直径处的叶轮位置与血液入口开口之间存在轴向距离。例如,心室辅助装置被配置为使得在舒张期期间,在叶轮处于其最大直径的叶轮位置和血液入口开口之间存在超过3mm(例如,超过5mm)的轴向距离(例如,如上文参考图10A‑图10C所述)。对于一些这样的应用,这减少了溶血(相对于如果在叶轮处于其最大直径处的叶轮位置与血液入口开口之间有更小的轴向距离或没有轴向距离)和/或通过减少湍流来提高叶轮的功效,通过允许进入血液入口开口的血液流线在被叶轮泵送之前变得至少部分地与叶轮的纵向轴线对准。
[0286] 现在参考图14,其是根据本发明的一些应用的放置在受试者的左心室22内的心室辅助装置20的示意图(示出了左心室的横截面图)。出于说明的目的,图14示出了覆盖在左心室横截面上的主动脉瓣26,尽管主动脉瓣位于与主截面视图的平面不同的平面中。还参考图15A‑图15D,这些图是根据本发明的一些应用的心室辅助装置的远侧末端元件107的示意图,该远侧末端元件107至少部分弯曲,以限定类似于问号的曲率,并且还参考图16A和图16B,这些图是根据本发明的一些应用的设置在受试者的左心室内的、图15C‑图15D的心室辅助装置的示意图。
[0287] 对于一些应用,心室辅助装置由导引线引导,通过导引线将心室辅助装置朝向左心室的心尖342插入。左心室的壁可以被认为是由隔膜壁338(其将左心室与右心室340分开)、后壁336(乳头肌341从后壁336突出,并且二尖瓣设备被设置在后壁336上方)和自由壁334组成,这三个壁中的每一者占据左心室周长的大约三分之一(如图14中三等分左心室的虚线所示)。典型地,不希望远侧末端元件(或心室辅助装置的任何其他部分)与隔膜壁接触,因为这有可能导致心律失常的风险。更典型地,希望保持远侧末端元件(和心室辅助装置的任何其他部分)与后壁之间的距离,以便不干扰二尖瓣设备,并且防止二尖瓣设备干扰心室辅助设备的功能。因此,心室辅助装置典型地以这样的方式被引导朝向心尖,即,如果并且当远侧末端元件接触左心室内壁时,该心室辅助装置接触自由壁334,如图14和图16A‑图16B所示。
[0288] 典型地,如上所述,心室辅助装置通过导引线被引入受试者的心室。远侧末端部分120限定腔体122,使得在将心室辅助装置引入受试者的心室期间,将远侧末端部分保持在平直的构型。对于一些应用,当导引线被移除时,远侧末端部分被配置为呈现其弯曲形状。
注意,图15A‑图15D示出了远侧末端部分120最初形成时的形状。典型地,由于导引线穿过腔体122插入(从而暂时拉直远侧部分),在被部署到受试者的左心室内时,远侧末端部分的曲率小于图15A‑图15D中的至少一些中所示的曲率。例如,图15C示出远侧末端部分的曲率使得远侧末端部分的弯曲部分形成完整的环扣。然而,图15C的远侧末端部分在图16A中示出为在受试者的左心室内,并且该远侧末端部分不形成完整的环扣。
[0289] 如上所述,远侧末端部分120典型地形成远侧末端元件107的一部分,远侧末端元件107还包括轴向轴杆接收管126。典型地,远侧末端元件107被配置为使得在其非约束构型中(即,在没有任何力作用在远侧末端部分上的情况下),远侧末端元件是至少部分弯曲的。对于一些应用,在给定平面内,远侧末端元件107具有近侧平直部分346(其至少一部分典型地包括轴向轴杆接收管126)。远侧末端元件107的近侧平直部分限定纵向轴线348。远侧末端元件107的弯曲部分在第一方向上远离纵向轴线348弯曲,并且随后经过拐点并且在相反方向上相对于纵向轴线348弯曲。例如,如图15A‑图15B所示,在纸面的平面内,远侧末端元件首先向纸面的顶部弯曲,随后向纸面的底部弯曲,并且如图15C‑图15D所示,在纸面的平面内,远侧末端元件首先向纸面的底部弯曲,随后向纸面的顶部弯曲。典型地,当成形为如图15A‑图15D所示时,远侧末端元件限定类似于问号或网球拍的整体曲率,远侧末端元件在远侧末端元件的平直的近侧平直部分的纵向轴线的一侧限定隆起部351。对于一些应用,隆起部大致上成形为半椭圆。(应当指出,在这种情况下,术语“半椭圆”包括半圆。还应注意,在一些情况下,末端不限定精确的半椭圆,而是基本上类似于半椭圆的隆起部状。)[0290] 如图15A‑图15B所示,对于一些应用,在经过拐点之后,远侧末端元件继续弯曲,使得远侧末端元件向回交叉到纵向轴线348上。图15A示出了一个示例,其中远侧末端元件的端部还没有再次向回交叉到纵向轴线上,并且在远侧末端元件的远侧端部与弯曲部分的近侧端部之间存在较大的间隙。图15B示出了一个示例,其中远侧末端元件的端部再次向回交叉到纵向轴线上,并且在远侧末端元件的远侧端部与弯曲部分的近侧端部之间存在较小的间隙。如图15C‑图15D(这些图分别是相同形状的远侧末端元件的截面图和等轴测视图)所示,对于一些应用,在经过拐点之后,该末端不弯曲使得远侧末端元件向回交叉到纵向轴线
348上。相反,远侧末端元件的弯曲部分的所有曲率都出现在纵向轴线348的一侧上。
[0291] 参考图15C,典型地,止血阀(例如鸭嘴阀390)被设置在远侧末端部分120的远侧节段内,并且被配置为防止血液流入到腔体122中。典型地,鸭嘴阀所具有的最大宽度小于3mm,例如小于2mm,典型地,整个鸭嘴阀被设置在远侧末端部分的远侧节段内,该远侧节段被设置在远侧末端部分的最远侧10mm内,例如远侧末端部分的最远侧5mm内。对于一些应用,鸭嘴阀面向近侧(即,使得阀的宽入口面向远侧末端部分的远侧端部,并且使得阀的窄末端背离远侧末端部分120的远侧端部)。典型地,当部署在受试者的左心室内时,远侧末端元件107的弯曲部分的曲率被配置为向心室辅助装置20提供防创伤末端。更典型地,远侧末端元件被配置为将心室辅助装置的入口开口108与左心室的壁分隔开。
[0292] 现在参考图16A和图16B,首先注意到这些图示出了左心室22的截面视图,其中隔膜壁338设置在页面的左侧,而自由壁334设置在页面的右侧。在该视图中,左心房359和左心358在左心室上方可见,并且右心室340在左心室的左侧可见。注意,如图16A‑图16B(以及图17Ai‑图17D)所示的主动脉和左心室的视图不同于例如图1B所示的视图。图1B是示意性说明,出于说明的目的而提供,而并不一定合适地描述心室辅助装置相对于解剖结构的比例和定向。
[0293] 对于一些应用,远侧末端元件107被配置为当远侧末端元件抵靠受试者的左心室的心尖放置时,将血液入口开口与受试者的左心室的后壁分隔开。典型地,远侧末端元件被配置为当远侧末端元件接触受试者的左心室的心尖时,将血液入口开口与受试者的左心室的隔膜壁分隔开。
[0294] 典型地,远侧末端元件107被插入左心室,使得隆起部351朝向隔膜壁338隆起。当设置成这种构型时,响应于远侧末端元件107被推向心尖(例如,由于医生推进装置或响应于左心室的运动),血液入口开口108典型地被推向自由壁334的方向并且远离隔膜壁338(在图16B所示的箭头方向上)。典型地,这是由于近侧平直部分346绕问号形状的弯曲部分枢转,如所示的。相比之下,其他形状的末端,如果以类似的定向设置,则可能导致血液入口开口被推向隔膜壁。例如,如果远侧末端元件具有猪尾末端(其中末端沿单一曲率方向弯曲),该猪尾末端被定向成使得猪尾弯曲部位于远侧末端元件的平直部分的纵向轴线的自由壁侧,则向远侧推压末端典型地会由于猪尾弯曲环扣收紧而导致血液入口开口朝向隔膜壁。
[0295] 参考图14‑图16B中的所有图,注意到本发明的范围包括使用问号或网球拍形的远侧末端元件与任何心室辅助装置相结合,甚至没有远侧末端元件107的其他特征和/或部分(例如,轴向轴杆接收管126)。还注意到,典型地,远侧末端部分的曲率都在单个平面内。
[0296] 现在参考图17Ai和图17Aii,它们是心室辅助装置20的示意图,根据本发明的一些应用,该装置具有设置在其远侧末端元件107上的球囊220,该球囊被配置为促进轴向轴杆92相对于心室的壁的运动。
[0297] 如上所述,典型地,轴向轴杆92经由叶轮的腔体62穿过叶轮50的轴线。更典型地,轴向轴杆是刚性的,例如刚性管。轴向轴杆本身经由近侧径向支承件116和远侧径向支承件118得到径向稳定。进而,轴向轴杆通过穿过由叶轮限定的腔体62而相对于框架34的内表面径向稳定叶轮。对于一些应用,轴向轴杆进入远侧末端元件107的轴向轴杆接收管126。典型地,如果轴向轴杆弯曲,轴向轴杆与远侧和径向支承件之间的摩擦力会增加。因此,典型地希望轴向轴杆保持在平直的构型中。对于一些应用,球囊220为远侧末端元件的远侧端部提供相对于左心室的壁的运动自由度,其方式是不会导致远侧末端部分的近侧端部(其限定轴向轴杆接收管)经历实质性运动。例如,如图17Ai和图17Aii中的心尖342附近的箭头所示,球囊可以相对于心尖旋转而不会引起轴向轴杆接收管的实质性运动。因此,即使球囊经历相对于心尖的运动(如从图17Ai到图17Aii的过渡中所示),轴向轴杆也保持在基本上平直的构型中。对于一些应用,使用清洗流体,例如使用参考Tunal的US2020/0237981的图13D描述的技术对球囊220进行填充,US2020/0237981通过引用并入本文。
[0298] 现在参考图17Bi和图17Bii,它们是根据本发明的一些应用的心室辅助装置20的示意图,该装置具有接头230,该接头230被配置为促进其远侧末端部分120相对于其轴向轴杆枢转。如上所述,对于一些应用,远侧末端元件107包括轴向轴杆接收管126以及远侧部分120。对于一些应用,接头230允许远侧末端部分120相对于轴向轴杆接收管126移动。例如,接头230可以是如图所示的球窝接头,和/或它可以是旋转接头,和/或万向接头。因此,即使远侧末端部分经历相对于左心室的心尖342的运动(如从图17Bi到图17Bii的过渡中所示),轴向轴杆92也保持在基本上平直的构型中。对于一些这样的应用,远侧末端部分120如上文所述被成形。
[0299] 现在参考图17C,其是根据本发明的一些应用的心室辅助装置的示意图,其外管140和/或142成形为预定曲率,使得当轴向轴杆设置在受试者的左心室22内时,心室辅助装置的轴向轴杆92保持在基本上平直的构型。
[0300] 如上文参考图10A‑图10C所述,对于一些应用,驱动线缆130设置在第一外管140内,该第一外管被配置为充当驱动线缆支承管,当驱动线缆经历旋转和/或轴向往复运动时,第一外管140保持静止。第一外管被配置为有效地充当沿着驱动线缆长度的支承件。对于一些应用,第一外管140设置在第二外管142内。对于一些应用,第一外管和第二外管中的至少一者被成形为使得外管的设置于主动脉弓内的部分具有预定曲率半径RC,该预定曲率半径RC大于18mm和/或小于32mm(例如,小于24mm),例如,18‑32mm或18‑24mm。对于一些应用,通过限定这样的曲率半径,轴向轴杆以这样的度进入左心室,使得当心室辅助装置的远侧末端部分设置在心尖342附近时,轴向轴杆处于基本上平直的构型中。
[0301] 现在参考图17D,其是根据本发明的一些应用的心室辅助装置20的示意图,该装置具有远侧末端240,该远侧末端被配置为锚定到左心室的心尖342的组织。对于一些应用,远侧末端240是螺丝形元件(例如,如图所示的螺丝锥形元件),并且远侧末端被配置为拧入心尖的组织中,以便将心室辅助装置的远侧端部锚定到心尖。典型地,将远侧末端锚定在心尖减少泵部分27相对于左心室内部结构的移动,并由此减少可能由这种移动引起的对左心室内部结构的损伤的风险。
[0302] 现在参考图18A、图18B和图18C,这些图是根据本发明的相应应用的心室辅助装置的远侧径向支承件118的示意图。
[0303] 参考图18A,对于一些应用,径向支承件设置在支承件壳体119内。对于一些这样的应用,径向支承件和支承件壳体由相应的、彼此不同的材料制成。例如,径向支承件可以由具有相对高硬度的第一材料(例如陶瓷)制成,并且支承件壳体可以由相对容易成形为所需形状的第二材料制成,第二材料例如金属或合金(例如,不锈钢、钴铬和/或镍钛诺)。对于一些应用,近侧径向支承件116还设置在支承件壳体内,其中近侧径向支承件和支承件壳体由相应的、彼此不同的材料制成(与参考远侧径向支承件118所述的方式大体相似)。如上所述,对于一些应用,心室辅助装置包括远侧延伸部121,该远侧延伸部121被配置为加固远侧末端元件的区域(轴杆92的远侧端部移动到该区域中)(例如,下文所述的轴向轴杆接收管126或其一部分)。对于远侧径向支承件118设置在支承件壳体119内的应用,远侧延伸部121典型地包括从支承件壳体119延伸而不是从远侧径向支承件本身延伸的延伸部。如上所述,典型地,在框架34的远侧端部处,远侧支柱接合部33被放置到由远侧径向支承件118的外表面限定的凹槽中,凹槽被成形为与远侧支柱部分的形状相一致。对于一些应用,支承件壳体的外表面(而不是支承件的外表面)被成形为限定这样的凹槽(凹槽由图18A和图18B中的参考数字127表示)。
[0304] 现在参考图18B,对于一些应用,材料层123设置在径向支承件118和支承件壳体119之间。对于一些应用,该材料被配置为允许径向支承件相对于支承件壳体的一些运动,和/或缓冲这种运动。例如,材料层可以包括弹性体材料层。对于一些应用,近侧径向支承件
116具有类似的构型,其中材料(例如,弹性体材料)设置在径向支承件和支承件壳体之间,该材料被配置为允许径向支承件相对于支承件壳体的一些运动,和/或缓冲这种运动。对于一些这样的应用,通过允许径向支承件和支承件壳体之间的运动,材料层允许刚性轴向轴杆相对于框架34的一些运动。对于一些应用,以这种方式,轴向轴杆92被允许变得与框架的纵向轴线稍微不对准。
[0305] 参考图18C,对于一些应用,远侧径向支承件118的与支承件壳体119的内表面邻接的外表面125具有凸曲线。对于一些应用,支承件的凸起弯曲的外表面被配置为允许径向支承件相对于支承件壳体的一些运动。对于一些应用(未示出),支承件壳体的内径向表面(其邻接支承件的外表面)具有凸曲线,例如允许径向支承件相对于支承件壳体的一些运动。对于一些应用,近侧径向支承件116具有类似的构型,其中支承件的外表面和/或支承件壳体的内径向表面具有凸曲线。对于一些这样的应用,通过允许径向支承件和支承件壳体之间的运动,支承件和/或支承件壳体的上述形状允许刚性轴向轴杆相对于框架34的运动。对于一些应用,以这种方式,轴向轴杆被允许变得与框架的纵向轴线稍微不对准。
[0306] 对于一些应用,径向支承件的长度允许刚性轴向轴杆相对于框架34运动,使得轴向轴杆允许与框架的纵向轴线稍微不对准。例如,近侧和远侧径向支承件中的每一者的长度可以小于2mm,小于1.5mm,或小于1mm,例如,0‑1.5mm,或0.5‑1mm。
[0307] 现在参考图19A,它是根据本发明的一些应用的心室辅助装置20的示意图,该装置的泵出口管24被配置为当血液被通过泵出口管泵送时变得弯曲,并且泵出口管相对于心室辅助装置的远侧末端部分120是可旋转的。还参考图19B,其是根据本发明的一些应用的在没有心室辅助装置的其他部件的情况下图19A的泵出口管24的示意图。另外参考图19C,其是根据本发明的一些应用的设置在受试者的主动脉30和左心室22内的图19A‑图19B的心室辅助装置20的示意图。注意,如图19C所示的主动脉和左心室的视图不同于例如图1B所示的视图。图1B是示意性图示,出于说明的目的而提供,而并不一定合适地描述心室辅助装置相对于解剖结构的比例和定向。还要注意,如图19C所示的主动脉和左心室的视图不同于例如图16A‑图16B和图17Ai‑图17D所示的视图。图19C示出了左心室的截面图,其中后壁336被设置在页面的左侧,而自由壁334被设置在页面的右侧。
[0308] 如上所述,对于一些应用,沿着泵出口管24的近侧部分,框架34不被设置在管内,因此管不被框架34支撑在打开状态。管24典型地由不可渗透血液的可塌缩的材料制成。例如,管24可以包括聚氨酯、聚酯和/或硅树脂。可替代地或附加地,管由聚对苯二甲酸乙二醇酯(PET)和/或聚醚嵌段酰胺 制成。典型地,管的近侧部分被配置为放置成使得它至少部分地设置在受试者的升主动脉内。对于一些应用,管的近侧部分穿过受试者的主动脉瓣,从受试者的左心室进入受试者的升主动脉,如图1B所示。如上所述,管典型地在管的远侧端部处限定一个或更多个血液入口开口108,在叶轮运行期间,血液经由这些血液入口开口从左心室流入到管中。对于一些应用,管的近侧部分限定一个或更多个血液出口开口109,在叶轮运行期间,血液经由这些血液出口开口从管流入升主动脉。在叶轮运行期间,通过管的血流压力典型地将管的近侧部分保持在打开状态。
[0309] 对于一些应用,泵出口管24是预成形的,使得在叶轮运行期间,当通过管的血流压力将管的近侧部分保持在打开状态时,管是弯曲的。典型地,曲率是这样的,使得当管的近侧端部被设置在主动脉内时,管的至少一部分被设置在左心室内,并且远离左心室的后壁、朝向左心室的心尖和/或朝向自由壁弯曲。此外,更典型地,曲率是这样的,使得当管的近侧端部被设置在主动脉内时,管的至少一部分被设置在左心室内,并且远离左心室的隔膜壁、朝向左心室的心尖和/或朝向自由壁弯曲。对于一些应用,管的曲率使得在血液入口开口108和左心室的后壁336、二尖瓣小叶402和/或二尖瓣瓣下部分(例如腱索404、心肉柱和/或乳头肌341)之间的间距得以保持,如图19C所示。
[0310] 典型地,管24在弯曲模具中使用吹塑预成型,或者在吹塑过程或浸入过程之后使用成型模具预成型。典型地,管的远侧部分(其中设置有框架34、叶轮50和轴向轴杆92)由框架34保持在平直的且打开的构型。管的位于框架34近侧并且设置在左心室内的部分典型地被成形为限定上述曲率。对于一些应用,该曲率使得在管的在管的近侧端部处的纵向轴线与管在管的远侧端部处的纵向轴线之间的角度gamma大于90度(例如,大于120度,或大于140度),和/或小于180度(例如,小于160度,或小于150度),例如,90度‑180度,90度‑160度,
120度‑160度,或140度‑150度。对于一些应用,管的曲率使得管的位于弯曲部内侧的表面限定曲率半径R,该曲率半径R大于10mm,例如大于20mm,和/或小于200mm(例如100mm),例如
10mm‑200mm,或20mm‑100mm。(在图19B中显示了虚线横跨其直径的虚线圆,以指示曲率半径R的测量方法。)
[0311] 注意,如参考图19A‑图19C所述,泵出口管24被配置为使得(a)在没有血液流过管的情况下,管典型地响应于管外侧的压力超过管内侧的压力而塌缩,并且(b)当血液以足够的速率流过管,使得管内压力超过管外侧的压力时,则管呈现其预成形的弯曲构型。还应注意,当管24呈现其弯曲构型时,管典型地引起驱动线缆130的设置在管的弯曲部分内的部分也变得弯曲,如图19A和图19C所示。也就是说,是管本身的预成形典型地引起管和驱动线缆弯曲,而不是驱动线缆(或设置在管内的不同元件)引起管弯曲。可替代地,外管140和/或142(其围绕驱动线缆设置)成形为限定弯曲部,并且外管引起驱动线缆和管24呈现弯曲形状。对于一些应用,外管140和/或142与管24二者均成形为限定弯曲形状。
[0312] 现在参考图19D‑图19E,这些图是根据本发明的一些应用的心室辅助装置20的示意图,该装置的泵出口管24被配置为当血液被通过管泵送时变得弯曲。在图19D和图19E中,出于说明的目的,管24以没有心室辅助装置的其他部件(例如叶轮50、框架34等)的方式被示出。图19E是根据本发明的一些应用的被设置在受试者的主动脉30和左心室22内的、图19D的心室辅助装置20的示意图。图19E所示的左心室的视图类似于图19C所示的视图。对于一些应用,入口开口108和/或出口开口109以围绕管24的非轴对称配置设置。典型地,管24将入口开口和/或出口开口的位置限定成使得管24变得弯曲和/或保持如参考图19A‑图19C所述的管24的曲率。例如,如图所示,血液入口孔可以设置在管24的位于管的弯曲部内侧的一侧上(或在管的期望弯曲部内侧上)。随着血液流入到血液入口开口中,这降低了血液入口开口上方区域中的压力,并且管24的远侧端部则被拉向该区域(如箭头310所示)。可替代地或附加地,血液出口开口109可以被设置在管24的位于管的弯曲部内侧处的一侧上(或管的期望弯曲部的内侧上)。随着血液流出血液出口开口,血液冲击主动脉壁,这引起管24的近侧端部在相反的方向(即箭头312的方向)被推压。
[0313] 如参考图19A‑图19C所述,典型地,如图19E所示,泵出口管的曲率使得血液入口开口108与左心室的后壁336、二尖瓣小叶402和/或二尖瓣瓣下部分(例如腱索404、心肉柱和/或乳头肌341)之间的间隔得以保持。典型地,曲率是这样的,使得当管的近侧端部被设置在主动脉内时,管的至少一部分被设置在左心室内,并且远离左心室的后壁、朝向左心室的心尖和/或朝向自由壁弯曲。此外,更典型地,曲率是这样的,使得当管的近侧端部被设置在主动脉内时,管的至少一部分被设置在左心室内,并且远离左心室的隔膜壁、朝向左心室的心尖和/或朝向自由壁弯曲。
[0314] 对于一些应用,当将心室辅助装置部署到左心室内时,首先部署远侧末端部分。如上所述,远侧末端部分典型地相对于左心室解剖结构以给定定向部署。典型地,在部署远侧末端部分之后,部署泵出口管。在一些情况下,已经相对于左心室解剖结构以所需定向部署远侧末端部分,管的弯曲部分没有以所需定向设置在左心室内。因此,对于一些应用,远侧末端部分经由接头212(其允许泵出口管相对于心室辅助装置的远侧末端部分旋转,如图19A‑图19E中的箭头210所示)(直接或间接)联接到泵出口管。例如,接头可以是旋转接头和/或球窝接头(例如,如图17Bi‑图17Bii所示的球窝接头230),和/或万向接头(例如,如图
20A‑图20C所示的接头232)。对于一些应用,接头设置在远侧末端元件107的近侧部分内。可选地或附加地,接头设置在远侧末端部分120和轴向轴杆接收管126之间(例如,如图17Bi‑图17Bii所示)。
[0315] 现在参考图19F,其是根据本发明的一些应用的心室辅助装置20的示意图,该心室辅助装置包括弯曲元件218,该弯曲元件218被配置为向管24提供预定曲率。对于一些应用,作为管24本身被成形为限定弯曲部(例如,如参考图19A‑图19E所述)的替代或补充,心室辅助装置包括弯曲元件218。典型地,弯曲元件由形状记忆材料(例如诸如镍钛诺的形状记忆合金)制成。对于一些应用,弯曲元件由镍钛诺管形成,该镍钛诺管被切割以限定孔或缝隙,使得该管能够被预成形为期望的弯曲形状。例如,镍钛诺元件可以是本领域中已知的镍钛诺“海波管”(即,沿其长度具有微工程特征的镍钛诺管)。典型地,弯曲元件218沿着驱动线缆的纵向节段围绕驱动线缆130设置,该纵向节段近侧于(例如,直接近侧于)近侧径向支承件116。对于一些应用,沿着驱动线缆的该纵向节段,弯曲元件用于代替外管142。
[0316] 对于一些应用,弯曲元件定形为具有曲率,该曲率大致上类似于参考图19A‑图19E相对于管24所描述的曲率。对于一些应用,曲率使得弯曲元件的在弯曲元件的近侧端部处的纵向轴线与弯曲元件的在弯曲元件的远侧端部处的纵向轴线之间的角度omega大于90度(例如,大于120度,或大于140度),和/或小于180度(例如,小于160度,或小于150度),例如,90‑180度,90‑160度,120‑160度,或140‑150度。对于一些应用,管的曲率是这样的,使得弯曲元件的位于弯曲部内侧的表面限定的曲率半径大于10mm,例如大于20mm,和/或小于
200mm(例如100mm),例如10mm‑200mm,或20mm‑100mm。如参考图19A‑图19C所述,典型地,管的曲率使得在血液入口108和左心室的后壁336、二尖瓣小叶402和/或二尖瓣的瓣下部分(例如腱索404、心肉柱和/或乳头肌341)之间的间隔得以保持,如图19C所示。典型地,曲率是这样的,使得当管的近侧端部被设置在主动脉内时,管的至少一部分被设置在左心室内,并且远离左心室的后壁、朝向左心室的心尖和/或朝向自由壁弯曲。此外,更典型地,曲率是这样的,使得当管的近侧端部被设置在主动脉内时,管的至少一部分被设置在左心室内,并且远离左心室的隔膜壁、朝向左心室的心尖和/或朝向自由壁弯曲。
[0317] 对于一些应用,当将心室辅助装置部署在左心室内时,首先部署远侧末端部分。如上所述,远侧末端部分典型地相对于左心室解剖结构以给定定向部署。典型地,在部署远侧末端部分之后,部署弯曲元件218。在一些情况下,已经相对于左心室解剖结构以所需定向部署远侧末端部分,弯曲元件218没有以所需定向设置在左心室内。因此,对于一些应用,远侧部分经由接头212(其允许泵出口管相对于心室辅助装置的远侧末端部分旋转,如图19A‑图19E中的箭头210所示)(直接或间接)联接到弯曲元件218。例如,接头可以是旋转接头和/或球窝接头(例如,如图17Bi‑图17Bii所示的球窝接头230),和/或万向接头(例如,如图20A‑图20C所示的接头232)。对于一些应用,接头设置在远侧末端元件107的近侧部分内。可选地或附加地,接头设置在远侧末端部分120和轴向轴杆接收管126之间(例如,如图17Bi‑图17Bii所示)。
[0318] 参考图19A‑图19F,注意,对于一些应用,由于外管142锚定到主动脉并且远侧末端部分120变成锚定到左心室内壁(例如,心尖附近的自由壁),管24采用弯曲形状,如上文所述。还应注意,图16A‑图16B所示的管的曲率小于图19A‑图19F所示的管的曲率,因为图16A‑图16B示出了该装置的不同视图。在图16A‑图16B所示的视图中,曲率典型地不如图19A‑图19F所示的视图明显。
[0319] 现在参考图20A‑图20C,它们是根据本发明的一些应用的心室辅助装置20的示意图,该装置的轴向轴杆92包括接头232(例如,如图所示的万向接头)。如图所示,接头典型地设置在轴向轴杆的一部分内,该部分被配置为设置在叶轮的近侧衬套64和远侧衬套58之间。注意,在图20A中,叶轮的多个部分(例如材料的膜56和弹簧54)未示出,用于说明目的,并且为了提供轴向轴杆的该部分的可见性,轴向轴杆的该部分典型地设置在叶轮的近侧衬套64和远侧衬套58之间,在由叶轮限定的腔体62内(例如,腔体62在图3A‑图3C中示出)。或者,接头沿轴向轴杆设置在不同的位置,例如在叶轮近侧或在叶轮远侧。
[0320] 对于一些应用,接头232设置在轴向轴杆的近侧部分234和轴向轴杆的远侧部分236之间,近侧部分234和远侧部分236通过接头彼此联接,使得近侧部分和远侧部分可以通过接头相对于彼此弯曲。典型地,接头允许轴向轴杆采用与左心室装置的其他部分的曲率和/或受试者的解剖结构相一致的形状。对于一些应用,接头被配置为允许轴向轴杆与框架
34的曲率一致,使得即使框架34变得稍微弯曲,轴向轴杆的近侧部分相对于近侧支承件116同轴地设置,并且轴向轴杆的远侧部分相对于远侧支承件118同轴地设置。
[0321] 图21是根据本发明的一些应用的包括一个或更多个血压测量管222的心室辅助装置的示意图。如上文所述,典型地,心室辅助装置包括穿过受试者的主动脉瓣的泵出口管24,使得该管的近侧端部被设置在受试者的主动脉内,而管的远侧端部被设置在受试者的左心室内。典型地,血泵(其典型地包括叶轮50)被设置在管24内、受试者的左心室内,并且被配置为通过管24将血液从左心室泵入受试者的主动脉。对于一些应用,心室血压测量管
222被配置为延伸到至少管24的外表面213,使得血压测量管的远侧端部处的开口214与管
24外的患者血流直接流体连通。典型地,开口214被配置为在受试者的左心室内,近侧于血泵(例如,近侧于叶轮50)。压力传感器216(在图1A中示意性地示出)测量心室血压测量管内的血液压力。典型地,通过测量左心室血压测量管内的血液压力,从而压力传感器测量管24外的受试者血压(即左心室血压)。典型地,血压测量管222从受试者体外延伸到管的远侧端部处的开口214,并且压力传感器216被设置成朝向管的近侧端部,例如在受试者体外。对于一些应用,计算机处理器25(图1A)接收测量到的血压的示值,并且响应于测量到的血压来控制由叶轮进行的血液泵送。
[0322] 对于一些应用,心室辅助装置包括两个或更多个这样的心室血压测量管222,例如,如图21中示出的心室血压测量管222。对于一些应用,基于在每个左心室血压测量管内测量的血压,计算机处理器25确定该两个或更多个心室血压测量管之一的开口是否堵塞。例如,这可能由于开口与心室内间隔壁和/或不同的心室内部分接触而发生。典型地,响应于对该两个或更多个心室血压测量管之一的开口被堵塞的确定,计算机处理器基于在两个或更多个心室血压测量管的另一个内测量到的血压来确定受试者的左心室压力。
[0323] 对于一些应用,外管142在外管的被配置为设置在管24内的外表面的一部分中限定凹槽215。典型地,在将心室辅助装置插入受试者体内期间,心室血压测量管222的从管24内延伸到管24的至少外表面的部分被配置为设置在凹槽内,使得心室血压测量管的该部分不从外管的外表面突出。
[0324] 对于一些应用(未示出),血压测量管222的远侧部分设置在泵出口管24的外侧。例如,血压测量管222可以从外管142延伸到泵出口管24的近侧端部,此后血压测量管可以内置于管泵出口管24的外表面中,例如,如Tuval的US 10,881,770的图16D所示,该US 10,881,770通过引用并入本文。
[0325] 如上文所述,对于一些应用,驱动线缆130从受试者体外的马达延伸到叶轮50设置在其上的轴向轴杆92。典型地,驱动线缆被设置在第一外管140与第二外管142内,如上所述。对于一些应用,血压测量管222的近侧部分包括第一外管140和第二外管142之间的通道,如图21的截面所示。在这方面,应注意,血压测量管应理解为指在受试者的左心室内、从压力传感器216延伸到泵出口管24外侧的连续腔体,而不管腔体沿腔体的长度是否存在结构变化。如上所述,典型地还在外管140和外管142之间泵送清洗流体,并且对于一些应用,通过通道226泵送清洗流体。典型地,血压测量管222比清洗流体通道226占据更多限定在外管140和外管142之间的截面面积,如图21所示。例如,(a)在外管140和外管142之间限定的被血压测量管占据的截面面积与(b)在外管140和外管142之间限定的被清洗流体通道226占据的截面面积,之比典型地大于3:2、大于3:1,或大于5:1。对于一些应用,血泵测量管占据限定于外管140和外管142之间的截面面积的相对大比例,以便将受试者的左心室内的泵出口管24外侧的血压向近侧传送到压力传感器216。
[0326] 现在参考图22A和图22B,它们是根据本发明的一些应用的无菌套筒242的示意图,该无菌套筒242被配置为在递送导管143和心室辅助装置20的外管142之间形成密封。对于一些应用(未示出),递送导管143经由导入器鞘(未示出)插入受试者的动脉(例如股动脉或桡动脉)中,导入器鞘插入到动脉中的切口中并且在心室辅助装置的整个操作过程中典型地保持在动脉内的适当位置。对于这种应用,无菌套筒(大致上类似于图22A‑图22B所示的套筒)典型地设置在递送导管143和导入器鞘(未示出)之间,以便允许递送导管和导入器鞘之间的运动,同时保持动脉切口的无菌。
[0327] 对于一些替代应用,心室辅助装置最初通过导入器鞘插入动脉切口,随后在心室辅助装置的剩余操作中移除导入器鞘。例如,心室辅助装置可以通过剥离式导入器鞘插入。随后,递送导管典型地与动脉切口直接接触。典型地,相对于在心室辅助装置的整个操作过程中导入器鞘保持在动脉切口内的情况,这减小了在手术的剩余时间内设置在动脉切口内的装置的直径。例如,递送导管的外径可能小于3.3mm(即10French),并且这是一旦导入器鞘被移除后通过切口的直径。递送导管的内径典型地小于3mm(即9French),例如,内径可以是2.7mm(即8French)。相反,如果在心室辅助装置的整个操作期间,导入器鞘保持在适当的位置,那么这将增加穿过切口的直径,因为导入器鞘的壁的厚度必须额外地由切口容纳。例如,它可以将直径增加0.3‑0.6mm(即大约1‑2French)。
[0328] 对于一些这样的应用,递送导管向前推进,直到递送导管的远侧端部设置在受试者主动脉内的给定位置(例如,升主动脉内)。随后,通过使外管142相对于递送导管前进,使心室辅助装置的泵部分27相对于递送导管的远侧端部前进。对于这样的应用,无菌套筒242在递送导管143和心室辅助装置20的外管142之间形成密封,例如允许外管相对于递送导管运动,同时保持动脉切口的无菌。对于一些这样的应用,心室辅助装置以套组形式被提供给使用者,该套组包含设置在外管142和递送导管143之间适当位置的无菌套筒242。
[0329] 现在参考图23A‑图23C,其是根据本发明的一些应用的末端矫直元件270的示意图,该末端矫直元件270用于在导引线10穿过心室辅助装置20的远侧末端部分120插入期间矫直该心室辅助装置20的远侧末端部分120。如上所述,典型地,心室辅助装置通过导引线10插入受试者心室,该心室辅助装置以径向约束(即,卷曲)构型布置在递送导管143(例如,如图1B中示意性示出的)内。典型地,导引线首先在远侧末端元件107的远侧端部插入心室辅助装置中。对于一些应用,为了便于导引线穿过远侧末端元件的远侧端部插入(即,穿过远侧末端部分120),末端矫直元件270被放置成围绕远侧末端元件,例如以将远侧末端元件保持在矫直构型中。典型地,矫直元件是限定平直腔体271的壳体。矫直元件被放置成围绕远侧末端元件,使得远侧末端元件在腔体271内被设置成矫直构型,并且导引线被插入到远侧末端元件的远侧端部中(即,通过远侧部分120),例如,如图23B所示。对于一些应用,矫直元件被配置为可从远侧末端元件移除,而导引线被设置在远侧末端元件中。例如,矫直元件可以被刻痕、穿孔和/或具有沿其长度通过的缝隙272(如所示),以便于从远侧末端元件移除矫直元件,例如,如图23C所示。
[0330] 现在参考图24A、图24B和图24C,它们是示出根据本发明的一些应用在使用左心室辅助装置期间执行的测量结果的图表。本文所述的左心室辅助装置部署在猪心脏内。用主动脉内压力传感器测量猪的动脉搏动,同时左心室辅助装置以相应的旋转速率运行。根据在该装置上进行的体外试验,对该装置进行了校准,以便知道当叶轮以相应的旋转速率旋转时该装置产生的流量。图24A显示了由该装置产生的动脉搏动与流量的图点,这是在猪身上进行的实验中测量的(并使用叶轮旋转速率和流量之间的预定对应关系)。然后将图24A中所示的图点拟合为曲线,并将该曲线外推到y截距(即动脉搏动为零),如图24B所示。如图所示,通过对曲线的外推,动脉搏动为零时的流量估计为5.6升/分钟。在同一只猪身上,当左心室辅助装置不活动时,使用Swan‑Ganz导管测量心输出量。Swan‑Ganz导管测量到猪的自然心输出量为5.2升/分钟,即与通过流量/动脉搏动曲线外推估计的动脉搏动为零时的流量相似。假设,在动脉搏动为零时,左心室装置在很大程度上取代了心脏的固有功能,并且在这个数值下泵产生的流量提供出合理地接近了受试者的自然心输出量。
[0331] 根据上述实验结果,对于本发明的一些应用,在心室辅助装置的运行期间,测量受试者的动脉搏动,并从受试者的动脉搏动导出参数。典型地,随着叶轮的旋转速率增加,由血泵产生的流量增加。典型地,由血泵产生的流量是非搏动的,因为血泵是连续流动式血泵而不是搏动血泵。因此,典型的情况是,叶轮的旋转速率增加和由血泵产生的流量增加,受试者的动脉搏动降低。在一些应用中,受试者的动脉搏动是随着叶轮的旋转速率的变化而测量的。基于上述测量结果,导出动脉搏动与叶轮旋转速率和/或泵流量之间的关系。在一些应用中,基于上述关系,可以导出受试者的自然心输出量。对于一些这样的应用,当受试者的动脉搏动达到零时,受试者的动脉搏动和泵流量之间的关系被外推以确定泵流量将是多少。根据上述结果,假设,在这个值,泵正在取代心脏的固有功能,泵以这个值产生的流量提供了受试者的自然心输出量的近似值。
[0332] 关于参考图1A‑图24C所描述的心室辅助装置20的所有方面,应当注意,尽管图1A和图1B示出了在受试者的左心室中的心室辅助装置20,但是对于一些应用,装置20被放置在受试者的右心室内,使得该装置(经必要的修改)穿过受试者的动脉瓣,并且应用了本文描述的技术。对于一些应用,装置20的部件适用于不同类型的血泵。例如,本发明的方面可适用于以下泵,该泵被用于将血液从腔静脉和/或右心房泵入右心室、从腔静脉和/或右心房泵入肺动脉、和/或从肾静脉泵入腔静脉。这些方面可以包括管24的特征(例如,管的曲率)、叶轮50、泵部分27的特征、驱动线缆130,等等。可替代地或附加地,装置20和/或其一部分(例如,叶轮50,即使没有管24)被放置在受试者身体的不同部分内,以辅助从该部分泵送血液。例如,装置20和/或其一部分(例如,叶轮50,即使没有管24)可以被放置在血管中,并且可以被用于通过血管泵送血液。对于一些应用,装置20和/或其一部分(例如,叶轮50,即使没有管24)(经必要的修改)被配置为用于放置在锁骨下静脉或颈静脉内,在静脉与淋巴管的连接处,并且用于增加从淋巴管进入静脉的淋巴流体的流量。由于本发明的范围包括在除左心室和主动脉之外的解剖位置使用本文所述的设备和方法,因此心室辅助装置和/或其部分有时在本文(在说明书和权利要求书中)被称为血泵。
[0333] 本发明的范围包括将本文所述的任何设备和方法与以下一个或更多个申请中所述的任何设备和方法相结合,所有这些申请通过引用并入本文:
[0334] Tuval于2020年1月23日提交的US 2020/0237981,标题为“Distal tip element for a Ventricular assist device”,其要求以下优先权:
[0335] Tuval于2019年1月24日提交的题为“Ventricular assist device”的美国临时专利申请62/796,138;
[0336] Tuval于2019年5月23日提交的题为“Ventricular assist device”的美国临时专利申请62/851,716;
[0337] Tuval于2019年7月5日提交的题为“Ventricular assist device”的美国临时专利申请62/870,821;和
[0338] Tuval于2019年9月5日提交的题为“Ventricular assist device”的美国临时专利申请62/896,026。
[0339] Tuval的US 10,881,770,其是Tuval于2019年1月10日提交的题为“Ventricular assist device”的国际申请号PCT/IB2019/050186(公布为WO19/138350)的继续申请,其要求以下优先权:
[0340] Sohn于2018年1月10日提交的题为“Ventricular assist device”的美国临时专利申请62/615,538;
[0341] Sohn于2018年5月2日提交的题为“Ventricular assist device”的美国临时专利申请62/665,718;
[0342] Tuval于2018年6月7日提交的题为“Ventricular assist device”的美国临时专利申请62/681,868;和
[0343] Tuval于2018年9月6日提交的题为“Ventricular assist device”的美国临时专利申请62/727,605;
[0344] Tuval的US 2019/0269840,其是Tuval于2017年11月21日提交的题为“Blood pumps”的国际专利申请PCT/IL2017/051273(公布为WO18/096531)的美国国家阶段,该国际专利申请要求Tuval于2016年11月23日提交的美国临时专利申请62/425,814的优先权;
[0345] Tuval的US  2019/0175806,其是Tuval于2017年10月23日提交的题为“Ventricular assist device”国际申请号PCT/IL2017/051158(公布为WO18/078615)的继续申请,该国际申请要求Tuval于2016年10月25日提交的US 62/412,631和Tuval于2017年8月10日提交的US 62/543,540的优先权;
[0346] Tuval的US 2019/0239998,其是Tuval于2017年9月28日提交的题为“Blood vessel tube”的国际专利申请PCT/IL2017/051092(公布为WO18/061002)的美国国家阶段,该国际专利申请要求Tuval于2016年9月29日提交的美国临时专利申请62/401,403的优先权;
[0347] Schwammenthal的US 2018/0169313,其是Schwammenthal于2016年5月18日提交的题为“Blood pump”的国际专利申请PCT/IL2016/050525(公布为WO16/185473)的美国国家阶段,该国际专利申请要求Schwammenthal于2015年5月18日提交的题为“Blood pump”的美国临时专利申请62/162,881的优先权;
[0348] Schwammenthal的US 10,583,231,其是Schwammenthal于2015年5月19日提交的题为“Blood pump”的国际专利申请PCT/IL2015/050532(公布为WO15/177793)的美国国家阶段,该国际专利申请要求Schwammenthal于2014年5月19日提交的题为“Blood pump”的美国临时专利申请62/000,192的优先权;
[0349] Schwammenthal的美国专利US 10,039,874,其是Schwammenthal于2014年3月13日提交的题为“Renal pump”的国际专利申请PCT/IL2014/050289(公布为WO14/141284)的美国国家阶段,该国际专利申请要求(a)Schwammenthal于2013年3月13日提交的题为“肾泵”的美国临时专利申请61/779,803,和(b)Schwammenthal于2013年12月11日提交的题为“Renal pump”的美国临时专利申请61/914,475的优先权;
[0350] 2017年9月19日授予Tuval的题为“Curved catheter(弯曲导管)”的美国专利9,764,113,其要求Tuval于2013年12月11日提交的题为“Curved catheter”的美国临时专利申请61/914,470的优先权;以及
[0351] Tuval的US 9,597,205,其是Tuval于2013年6月6日提交的题为“Prosthetic renal valve”的国际专利申请PCT/IL2013/050495(公布为WO13/183060)的美国国家阶段,该国际专利申请要求Tuval于2012年6月6日提交的题为“Prosthetic renal valve”的美国临时专利申请61/656,244的优先权。
[0352] 本领域技术人员将认识到本发明不限于在上文中已特别示出和描述的内容。而是,本发明的保护范围包括在上文中描述的各种特征的组合与子组合两者,以及在阅读前面描述时本领域技术人员将会产生的不在现有技术中的、本发明的变化和修改。