会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

具有侧吸式回流系统的单塔脱氮装置和方法

申请号 CN202080031035.5 申请日 2020-04-14 公开(公告)号 CN114127500B 公开(公告)日 2024-04-12
申请人 查特能源化工股份有限公司; 发明人 P.J.特纳; D.A.小杜科特; T.P.古沙纳斯;
摘要 一种用于从 天然气 流体 进料物流中去除氮的系统,包括接收天然气流体进料物流的主换热器。蒸馏塔接收来自主换热器的冷却的流体物流,并且特征在于返回 蒸汽 出口和侧蒸汽出口端口。返回蒸汽出口向主换热器提供氮蒸汽,所述氮蒸汽在主换热器中被加热。侧蒸汽出口端口向主换热器提供蒸汽,回流 压缩机 接收并压缩来自主换热器的所得的物流体。回流后冷却器接收并冷却来自回流压缩机的流体,将冷却的流体引导至主换热器,并且将所得的物流体引导至回流分离装置。回流分离装置具有蒸汽出口和液体出口。回流分离装置的蒸汽出口将流体引导至主换热器,从而将流体引导至蒸馏塔的第一回流入口端口。回流分离装置的液体出口将流体引导至蒸馏塔的第二回流入口端口。
权利要求

1.一种用于从天然气流体进料物流去除氮的系统,包括:
a.主换热器,所述主换热器包括主进料冷却通道、抽取蒸汽加热通道、主回流物流冷却通道、回流蒸汽冷却通道、蒸汽部分冷却通道和氮蒸汽返回通道,所述主进料冷却通道包括入口和出口,其中所述主进料冷却通道的入口被构造成接收天然气流体进料物流;
b.蒸馏塔,所述蒸馏塔包括第一进料入口和第二进料入口、返回蒸汽出口、侧蒸汽出口端口、第一和第二回流入口端口和底部液体出口,其中所述侧蒸汽出口端口和所述第一和第二回流入口端口位于进料入口和返回蒸汽出口之间;
c.所述蒸馏塔的侧蒸汽出口端口被构造成向主换热器的抽取蒸汽加热通道提供蒸汽,所述蒸馏塔的返回蒸汽出口被构造成向所述主换热器的氮蒸汽返回通道提供氮蒸汽,并且所述蒸馏塔的第一回流入口端口与主换热器的回流蒸汽冷却通道成流体连通;
d.回流压缩机,所述回流压缩机被构造成接收和压缩来自主换热器的抽取蒸汽加热通道的蒸汽;
e.回流后冷却器,所述回流后冷却器被构造成接收和冷却来自回流压缩机的流体并将冷却的流体引导至主换热器的主回流物流冷却通道;
f.回流分离装置,所述回流分离装置被构造成接收来自主换热器的主回流物流冷却通道的流体,所述回流分离装置具有蒸汽出口和液体出口,其中回流分离装置的蒸汽出口被构造成将流体引导至主换热器的回流蒸汽冷却通道,并且回流分离装置的液体出口被构造成将流体引导至蒸馏塔的第二回流入口端口,
其中所述主进料冷却通道的所述氮蒸汽返回通道和所述抽取蒸汽加热通道被构造成对主换热器的主进料进料冷却通道、主回流物流冷却通道和回流蒸汽冷却通道进行冷却;
g.膨胀装置,所述膨胀装置被构造成接收并部分地冷凝来自主换热器的主进料冷却通道的冷却的天然气流体进料物流;
h.主进料分离装置,所述主进料分离装置被构造成接收来自膨胀装置的混合相物流,所述主进料分离装置包括蒸汽出口和液体出口,其中所述液体出口被构造成将液体物流引导至蒸馏塔的第一进料入口;
i.所述蒸汽部分冷却通道被构造成接收和冷却来自主进料分离装置的蒸汽出口的蒸汽物流并将所得冷却的物流引导至蒸馏塔的第二进料入口。
2.如权利要求1所述的系统,其中所述蒸馏塔包括再沸器入口端口并且所述主换热器包括再沸器通道,所述再沸器通道被构造成接收和至少部分地蒸发来自蒸馏塔的底部液体出口的液体物流,从而在主换热器中提供冷却,所述再沸器通道还被构造成将流体物流返回到蒸馏塔的再沸器入口端口。
3.如权利要求1所述的系统,其中所述主换热器进一步包括底部液体加热通道并且进一步包括,所述泵被构造成接收来自蒸馏塔的底部液体出口的液体物流并将液体物流泵送到底部液体加热通道,在那里液体物流被加热以在主换热器中提供冷却。
4.如权利要求1所述的系统,其中所述主换热器进一步包括底部液体加热通道,并且所述系统进一步包括:
j.泵,所述泵被构造成接收来自蒸馏塔的底部液体出口的液体物流并将液体物流泵送到底部液体加热通道,在那里液体物流被加热以在主换热器中提供冷却;
k.甲烷压缩机,所述甲烷压缩机被构造成接受来自主换热器的底部液体加热通道的流体物流;和
l.甲烷压缩机后冷却机,所述甲烷压缩机后冷却机被构造成接收来自甲烷压缩机的压缩流体物流。
5.一种从天然气流体进料物流去除氮的方法,包括以下步骤:
a.在主换热器中冷却天然气流体进料物流;
b.将冷却的天然气流体进料物流引导至蒸馏塔,包括以下步骤:i)将冷却的天然气流体进料物流分离成蒸汽进料物流和液体进料物流,和ii)将蒸汽进料物流和液体进料物流引导至蒸馏塔;
c.从蒸馏塔侧抽取蒸汽;
d.使用主换热器加热抽取蒸汽,从而在主换热器中提供制冷;
e.压缩加热的抽取蒸汽;
f.冷却并部分地冷凝压缩抽取蒸汽以形成第一混合相回流物流;
g.将第一混合相回流物流分离成第一液体回流物流和第一蒸汽回流物流;
h.将第一液体回流物流引导至蒸馏塔;
i.冷却第一蒸汽回流物流以形成第二回流物流;
j.将第二回流物流引导至蒸馏塔;
k.将氮蒸汽返回物流从蒸馏塔引导至主换热器;
l.使用主换热器加热氮蒸汽返回物流,从而在主换热器中提供制冷;和
m.其中步骤d和l中提供的制冷用于提供步骤a、f和i的冷却;和
n.从蒸馏塔底部抽取液体。
6.如权利要求5所述的方法,其中步骤i包括对第一蒸汽回流物流进行冷凝,使得第二回流物流是第二液体回流物流。
7.如权利要求5所述的方法,其中步骤i包括部分地冷凝第一蒸汽回流物流,使得第二回流物流是第二混合相回流物流,并且步骤j包括以下步骤:
i)分离第二混合相回流物流以形成第二蒸汽回流物流和第二液体回流物流;
ii)将第二蒸汽回流物流引导至主换热器;
iii)在主换热器中冷凝第二蒸汽回流物流,从而形成第三液体回流物流;
iv)将第二和第三液体回流物流引导至蒸馏塔。

说明书全文

具有侧吸式回流系统的单塔脱氮装置和方法

[0001] 优先权权益
[0002] 本申请要求于2019年4月23日提交的第62/837,439号美国临时申请的权益,该申请的内容通过引用并入本文。

技术领域

[0003] 本发明总体上涉及用于从天然气或液体天然气物流中去除氮的系统和方法,更具体地,涉及使用热泵系统提供额外制冷来从天然气或液体天然气流中去除氮的系统和方法。

背景技术

[0004] 在天然气液化过程期间、之前或之后,通常需要从天然气或液体天然气的进料物流中去除氮。这可能是由于纯化或氮回收要求而完成的。从进料物流去除的氮可用作燃料或用于其他应用或排放到大气中。将脱氮单元(nitrogen rejection unit,NRU)用于此类天然气或液体天然气进料物流的处理在本领域中是已知的,但希望提高效率并降低功率需求。

发明内容

[0005] 本主题的多个方面可以单独或共同地在下面描述和要求保护的设备和系统中实施。这些方面可以单独地或与在此描述的主题的其他方面结合使用,并且这些方面的共同描述并非旨在排除单独使用这些方面或单独或以与在所附权利要求中提出不同的组合的方式来要求保护这些方面。
[0006] 在一个方面,用于从天然气流体进料物流去除氮的系统包括主换热器,该主换热器包括主进料冷却通道、抽取蒸汽加热通道、主回流物流冷却通道、回流蒸汽冷却通道和氮蒸汽返回通道,所述主进料冷却通道包括入口和出口,其中主进料冷却通道的入口被构造成接收天然气流体进料物流。蒸馏塔包括进料入口、返回蒸汽出口、侧蒸汽出口端口、第一和第二回流入口端口以及底部液体出口,其中侧蒸汽出口端口和第一和第二回流入口端口位于进料入口和返回蒸汽出口之间。蒸馏塔的进料入口被构造成接收来自主换热器的主进料冷却通道的出口的流体物流。蒸馏塔的侧蒸汽出口被构造成向主换热器的抽取蒸汽加热通道提供蒸汽。蒸馏塔的返回蒸汽出口被构造成向主换热器的所述氮蒸汽返回通道提供氮蒸汽。蒸馏塔的第一回流入口端口与主换热器的回流蒸汽冷却通道成流体连通。回流压缩机被构造成接收和压缩来自主换热器的抽取蒸汽加热通道的流体。回流后冷却器构造成接收和冷却来自回流压缩机的流体并将冷却的流体引导至主换热器的主回流物流冷却通道。回流分离装置被构造成接收来自主换热器的主回流物流冷却通道的流体,回流分离装置具有蒸汽出口和液体出口,其中回流分离装置的蒸汽出口被构造成将流体引导至主换热器的回流蒸汽冷却通道,回流分离装置的液体出口被构造成将流体引导至蒸馏塔的第二回流入口端口。
[0007] 在另一方面,用于从天然气流体进料物流去除氮的系统包括主换热器,该主换热器包括主进料冷却通道、抽取蒸汽加热通道、主回流物流冷却通道、回流蒸汽冷却通道和蒸汽返回通道,所述主进料冷却通道包括入口和出口,其中主进料冷却通道的入口被构造成接收天然气流体进料物流。蒸馏塔包括进料入口、返回蒸汽出口、侧蒸汽出口端口、第一和第二回流入口端口和底部液体出口,其中侧蒸汽出口端口和第一和第二回流入口端口位于进料入口和返回蒸汽出口之间。蒸馏塔的进料入口被构造成接收来自主换热器的主进料冷却通道的出口的流体物流。蒸馏塔的侧蒸汽出口端口被构造成向主换热器的抽取蒸汽加热通道提供蒸汽。蒸馏塔的返回蒸汽出口被构造成向主换热器的所述氮气蒸汽返回通道提供氮蒸汽。蒸馏塔的第一回流入口端口与主换热器的回流蒸汽冷却通道成流体连通。回流压缩机被构造成接收和压缩来自主换热器的抽取蒸汽加热通道的流体。回流后冷却器构造成接收和冷却来自回流压缩机的流体并将冷却的流体引导至主换热器的主回流物流冷却通道。回流分离装置被构造成接收来自主换热器的主回流物流冷却通道的流体,回流分离装置具有蒸汽出口和液体出口,其中回流分离装置的蒸汽出口被构造成将流体引导至主换热器的回流蒸汽冷却通道和回流分离装置的液体出口被构造成将流体引导至蒸馏塔的第二回流入口端口。主换热器的氮蒸汽返回通道和抽取蒸汽加热通道被构造成冷却主换热器的主进料冷却通道、主回流物流冷却通道和回流蒸汽冷却通道。
[0008] 在另一方面,从天然气流体进料物流去除氮的方法包括以下步骤:在主换热器中冷却天然气流体进料物流;将冷却的天然气流体进料物流引导至蒸馏塔;从蒸馏塔侧抽取蒸汽;使用主换热器加热抽取的蒸汽,从而在主换热器中提供制冷;压缩加热的抽取蒸汽;冷却并部分地冷凝压缩的抽取蒸汽以形成第一混合相回流;将第一混合相回流分离成第一液体回流和第一蒸汽回流;将第一液体回流引导至蒸馏塔;冷却第一蒸汽回流以形成第二回流;将第二回流引导至蒸馏塔;将氮蒸汽返回物流从蒸馏塔引导至主换热器;使用主换热器加热氮蒸汽返回物流,从而在主换热器中提供制冷;从蒸馏塔底部抽取液体。
附图说明
[0009] 图1为本公开的系统和方法的第一实施方式的流程示意图;
[0010] 图2为本公开的系统和方法的第二实施方式的流程示意图;
[0011] 图3为本公开的系统和方法的第三实施方式的流程示意图;
[0012] 图4为本公开的系统和方法的第四实施方式的流程示意图;
[0013] 图5为本公开的系统和方法的第五实施方式的流程示意图。

具体实施方式

[0014] 本文公开了用于利用热泵系统和方法提供额外的制冷来从天然气流去除氮的脱氮单元(NRU)系统和方法。本公开的系统和方法的实施方式在图1‑5中示出并在下文中描述。
[0015] 在本文中应注意,通道和物流有时都由图中列出的相同元件编号来指代。此外,如本文所用和本领域已知的,换热器是其中在不同温度的两个或多个物流之间或在物流与环境之间发生间接热交换的装置或装置内区域。如本文所用,除非另有说明,否则术语“连通”等通常是指流体连通。此外,尽管连通的两种流体可以在混合时交换热量,但是这种交换不会被认为与换热器中的热交换相同,尽管这种交换可以在换热器中发生。如本文所用,术语“降低……的压(reducing the pressure of)”(或其变体)不涉及相变,而术语“闪蒸(flashing)”(或其变体)涉及相变,甚至包括部分相变。如本文所用,术语“高”、“中”、“中间”、“热”等是相对于可比较的物流而言的,如本领域惯用的。
[0016] 图1所示的本公开的系统和方法的第一实施方式接收液体天然气进料(LNG)进料,并且特征在于对于主制冷系统、LNG膨胀器、主进料预分离容器、三级回流(带有两个预分离或预分离容器)和热虹吸式再沸器循环的制冷回收。更具体地,参考图1,液体天然气进料10由主换热器12中的主进料冷却通道11接收并在其中被冷却。仅作为示例,换热器12(以及下面讨论的进一步实施方式中的所有主换热器)可以是钎焊换热器(BAHX)或其他换热器类型。然后将所得的冷物流14减压并通过液体膨胀器16部分蒸发,并将所得的物流18进料至主进料分离装置,例如分离容器22。应该注意的是,可以使用JT或本领域已知的其他膨胀装置或布置来代替液体膨胀器16。
[0017] 离开分离容器22的蒸汽物流24在换热器12中的进料蒸汽部分冷却通道25中被冷却,所得的冷却的物流26被引导至脱氮单元(NRU)蒸馏塔30的第一进料入口。离开分离容器22的液体物流32也行进到NRU塔30,在那里它在第二进料入口处进入,该第二进料入口位于物流26的第一进料入口下方。
[0018] 在替代性实施方式中,冷却的进料物流14进料可以通过单个进料入口进入NRU塔30,或者它可以在多于一个的分离装置中预分离(与图1所示的单个分离装置相反),向NRU塔30中额外的多个进料入口提供进料,以提高系统效率(通过在NRU塔的更上方引入具有较低沸点的组分)。
[0019] 因为图1的实施方式接收已经冷凝的进料物流10(LNG),在主换热器12的热端存在过量制冷,其可以被回收并用于为液化系统提供额外的制冷。更具体地,如图1所示,换热器12接收来自液化器系统的制冷剂入口物流34。物流34被引导到换热器12内的制冷剂冷却通道36中,其中来自物流34的制冷剂被冷却从而产生冷却的制冷剂返回物流38。冷却的制冷剂物流38被引导回液化器。
[0020] 在NRU塔30中在用于主进料的塔入口(图1中的物流26和32)上方的某点处,一部分蒸汽流44从NRU塔30的侧蒸汽出口端口被抽取。该物流是塔中组分的混合物,主要由氮、甲烷和任何痕量的低沸点组分(氦气、氩气、氢气等)组成。物流44被引导到换热器12的抽取蒸汽加热通道46,在那里它被加热,同时向换热器12的主进料冷却通道11和进料蒸汽部分冷却通道25以及附加的换热器通道(其中流如下被冷却)提供制冷。
[0021] 加热的物流48离开换热器的通道46并在回流压缩机52内被再压缩。所得的压缩的物流行进到回流后冷却器冷却装置54,在那里它被空气冷却或通过使用一些其他实用冷却系统(冷却、丙烷等)冷却。冷却的物流56被送往换热器12的主回流物流冷却通道58,在那里它被冷却并部分地冷凝。物流62随后行进至热回流分离装置,例如容器64。所得蒸汽物流66行进至换热器12中的热回流蒸汽冷却通道68,在那里它被冷却并部分地冷凝。所得物流
72然后行进至冷回流分离装置,例如容器74。来自冷回流分离装置74的蒸汽物流73行进通过冷回流蒸汽冷却通道75,在那里它被冷却和冷凝。所得液体物流77行进至NRU塔30的回流入口端口作为回流。分别来自热回流分离装置64和冷回流分离装置74的液体物流76和78被引导至NRU塔30的回流入口端口作为回流。如图1所示,物流76、77和78在多个入口点处进入NRU塔30。结果,总而言之,主回流56在多个温度下部分地冷凝并在多个点处进料到NRU塔30中。
[0022] 氮返回蒸汽物流82离开NRU塔30顶部的返回蒸汽出口,并被送往换热器12中的氮蒸汽返回通道84,以向上述换热器通道(其中流被冷却)提供制冷。所得的加热的氮物流86被排放到大气中或用于其他目的(例如燃料)。
[0023] 鉴于上述,NRU塔30的物流44的侧蒸汽出口端口和物流76、77和78的回流入口端口位于物流26和32的进料入口与物流82的回流蒸汽出口之间。
[0024] 任选的塔再沸器系统为其他物流提供制冷,并且由一个或多个单独的再沸器服务组成。它可以是强制再循环型(由泵提供循环)、热虹吸型(通过液压提供循环,NRU塔安装在包含再沸器服务的BAHX组件部分上方),或通过某种其他方法的。在图1所示的实施方式中,提供了热虹吸再沸器服务并包括液体管线92,液体物流通过该液体管线92离开NRU塔30的底部并行进到换热器12中的再沸器通道94。当在换热器12内提供制冷时,进入再沸器通道的液体被加热并且至少部分地蒸发。所得再沸器返回物流96离开换热器并经由再沸器入口端口返回到NRU塔30。
[0025] 来自NRU塔的底部液体物流98可以经由泵99泵送,或以其他方式引导到其他系统或泵送回换热器12并用于为主LNG进料提供冷凝负荷。
[0026] 在系统的替代性实施方式中,来自任何预分离容器(例如图1的22、64和/或74)的液体可以进一步过冷,这可以提高效率。来自任何预分离容器或来自最冷回流服务的液体可以全部或部分再循环至回流压缩机吸入口,以便为系统提供额外的制冷,从而提高系统效率或可操作性。
[0027] 在本公开的系统和方法的替代性实施方式中,如图2所示,该系统接收热天然气进料且其特征在于具有LNG膨胀器、主进料预分离容器、三级回流(具有两个预分离容器)和热虹吸式再沸器循环。更具体地,参考图2,热天然气进料物流108在主换热器112的主进料冷却通道111中被冷却并至少部分地冷凝。所得的物流114然后减压并通过液体膨胀器116部分蒸发。
[0028] 图2的实施方式的其余部件以与上述图1相同的方式操作,不同之处在于处理来自NRU塔130的底部液体物流118。更具体地,在图2的实施方式中,底部液体物流118经由泵132作为液体物流134泵回换热器112,在那里它进入底部液体加热通道136,用于为主天然气进料108提供制冷或冷凝负荷。
[0029] 在产品LNG被泵送和再沸以为主进料提供制冷的实施方式中,具有高排放压力的一组泵可以将一部分送往主换热器中的高压通道,并且可以使用阀来将另一部分流动送往主换热器中的低压通道。换言之,单个泵可用于提供两个压力级别的制冷,以降低天然气再压缩要求。
[0030] 在本公开的系统和方法的替代性实施方式中,如图3所示,系统接收热天然气进料且其特征在于具有强制循环再沸器和两级回流(具有一个预分离容器)。更具体地,参考图3,热天然气进料物流208在主换热器212的主进料冷却通道211中被冷却并至少部分地冷凝。所得的物流214然后减压并通过JT阀216部分蒸发。所得的物流218进料到NRU塔230。可以使用本领域已知的替代膨胀装置来代替JT阀216。
[0031] 在塔中在用于主进料物流218的塔入口上方的某个点处,一部分蒸汽物流244从NRU塔230的侧出口端口被抽取。该流是塔中组分的混合物,主要由氮、甲烷和任何微量低沸点组分(氦气、氩气、氢气等)组成。流244被引导至换热器212的抽取蒸汽加热通道246,在那里它被加热,同时向换热器212的主进料冷却通道211以及附加换热器通道(其中流被如下冷却)提供制冷。
[0032] 加热的物流248离开换热器的通道246并在回流压缩机252内被再压缩。所得的压缩物流行进到回流后冷却器冷却装置254,在那里它被空气冷却或通过使用一些其他实用冷却系统(冷却水、丙烷等)冷却。冷却的物流256被送往换热器212的主回流物流冷却通道258,在那里它被冷却并部分地冷凝。物流262然后行进至回流分离装置,例如容器264。所得的蒸汽物流266行进至换热器212中的回流蒸汽冷却通道268,在那里它被冷却和冷凝。所得的液体物流272作为回流行进至NRU塔230。来自分离装置264的液体物流276被引导至换热器212的回流液体冷却通道278,在那里它被过冷。所得的物流280作为回流被引导至NRU塔
230。如图3所示,物流272和280经由多个回流入口端口进入NRU塔230。
[0033] 氮蒸汽物流282离开NRU塔230的顶部并被送往换热器212中的氮蒸汽返回通道284以向上述换热器通道(其中流被冷却)提供制冷。所得加热的氮物流286被排放到大气中或用于其他目的(例如燃料)。
[0034] 来自塔230的底部液体物流292经由泵293作为液体物流295泵送到换热器212,在那里它进入底部液体加热通道294,用于为主天然气进料208提供制冷或冷凝负荷。所得天然气物流296离开通道294。一部分液体物流295可作为物流297被引导至主换热器212的再沸器通道299,所得的至少部分蒸发的物流返回塔230作为再沸器服务以提供换热器内的额外制冷。
[0035] 在本公开的系统和方法的另一个替代性实施方式中,如图4所示,系统接收热天然气进料且其特征在于具有热虹吸再循环再沸器、两级回流和基于进料气的氦回收。氦回收是通过使用进料分离容器进行的,液体被送往塔,蒸汽返回到换热器组件并进一步冷却。冷却后,进料分离容器的塔顶馏出物被送至低压分离器,塔顶馏出物形成氦产物,液体被送往塔顶附近。
[0036] 更具体地,参考图4,天然气进料310由主换热器312中的主进料冷却通道311接收并且在其中至少部分地冷凝。然后将所得的冷物流314减压并通过JT阀316部分蒸发。所得的物流318被进料到主进料分离装置,例如分离容器322。应注意,可以使用一些其他膨胀装置或本领域已知的布置来代替JT阀316。
[0037] 离开分离容器322的液体物流332行进至NRU塔330的主进料入口。
[0038] 离开分离容器322的蒸汽物流324在换热器312中的进料蒸汽部分冷却通道325中被冷却,所得的冷却的物流326被引导至氦分离装置,例如氦分离容器327。离开氦分离容器327的氦蒸汽物流329行进通过氦制冷回收通道330,由此在换热器312中提供制冷。加热的氦蒸汽输出物流331离开换热器312的通道330。
[0039] 在塔中在用于主进料物流332的塔入口上方的某个点处,一部分蒸汽流344从NRU塔330的侧出口端口被抽取。该物流是塔中组分的混合物,主要由氮、甲烷和任何微量低沸点组分(氦气、氩气、氢气等)组成。物流344被引导至换热器312的抽取蒸汽加热通道346,在那里它被加热,同时在换热器312内提供制冷。
[0040] 加热的物流348离开换热器的通道346并在回流压缩机352内被再压缩。所得的压缩物流行进到回流后冷却器冷却装置354,在那里它被空气冷却或通过使用一些其他实用冷却系统(冷却水,丙烷等)冷却。冷却的物流356被送往换热器312的主回流冷却通道358,在那里它被冷却并部分地冷凝。物流362然后行进到回流分离装置,例如容器364。所得的蒸汽物流366行进到换热器312中的回流蒸汽冷却通道368,在那里它被冷却和冷凝。所得的物流372行进至NRU塔330作为回流。
[0041] 可提供包括相应阀的再循环管线367以控制进入回流压缩机352的物流的组成。
[0042] 为了提高可操作性,回流压缩机的吸入可以任选地经由管线369(图4中的虚线所示)与进料气体掺合,通过调节相应的阀以保持更一致或更有利的回流压缩机吸入组成。
[0043] 温度控制旁通管线357的特征在于具有阀359,其可用于调节物流356通过通道358的部分,以便控制回流分离容器364内的温度。
[0044] 来自回流分离装置364的液体物流376被引导至塔的回流液体通道374,在那里它被过冷,然后被引导至NRU塔以作为物流375回流。
[0045] 离开氦分离容器327底部的液体物流380加入回流375并被引导至塔330。
[0046] 如图4所示,物流372和375经由多个回流入口端口进入NRU塔330。
[0047] 氮蒸汽物流382离开NRU塔330的顶部并被送往换热器312中的氮蒸汽返回通道384,以向换热器中的换热器通道(其中物流被冷却)提供制冷。所得加热的氮流386被排放到大气或用于其他目的(例如燃料)。
[0048] 在图4所示的实施方式中,提供了热虹吸再沸器服务并且包括液体管线392,液体物流通过该液体管线392离开NRU塔330的底部并且行进至换热器312中的再沸器通道394。当在换热器312内提供制冷时,进入再沸器通道的液体被加热并至少部分蒸发。所得再沸器返回物流396离开换热器并返回至NRU塔330。
[0049] 来自塔330的底部液体物流391经由泵393作为液体物流395被泵送到换热器312,在那里它进入底部液体加热通道397,用于为主天然气进料310提供制冷或冷凝负荷。产生的甲烷蒸汽物流398可被引导至输出压缩机。
[0050] 在本公开的系统和方法的另一个替代性实施方式中,如图5所示,系统接收热天然气进料且其特征在于具有热虹吸再循环再沸器、两级回流和经由来自回流预分离容器的液体的部分再循环的制冷。
[0051] 更具体地,参考图5,天然气进料410由主换热器412中的主进料冷却通道411接收并且在其中至少部分地冷凝。所得的冷物流414然后减压并通过JT阀416部分蒸发。所得的物流418被进料到NRU塔430的主进料入口。
[0052] 在塔中在主进料物流418的塔入口上方的某个点处,一部分蒸汽流444从NRU塔430的侧出口抽取。该物流是塔中组分的混合物,主要由氮、甲烷和任何微量低沸点组分(氦气、氩气、氢气等)组成。物流444被引导至换热器412的抽取蒸汽加热通道446,在那里它被加热,同时在换热器412内提供制冷。
[0053] 加热的物流448离开换热器的通道446并在回流压缩机452内被再压缩。所得的压缩物流行进到回流后冷却器冷却装置454,在那里它被空气冷却或通过使用一些其他实用冷却系统(冷却水,丙烷等)冷却。冷却的物流456被送往换热器412的主回流物流冷却通道458,在那里它被冷却并部分地冷凝。物流462然后行进至回流分离装置,例如容器464。所得蒸汽物流466行进至换热器412中的回流蒸汽冷却通道468,在那里它被冷却和冷凝。所得的物流472行进至NRU塔430作为回流。
[0054] 来自回流分离装置464的液体物流476被引导至塔的回流液体通道474,在那里它被过冷,然后被引导至NRU塔以作为流475回流。物流472和475经由多个回流入口端口进入NRU塔430。
[0055] 如图5所示,来自任何预分离容器,例如回流预分离容器464,或来自最冷回流服务的液体,可以经由回流再循环管线477完全或部分再循环,并调整相应的回流再循环阀,到换热器通道446(使得通道446也用作回流再循环通道)和回流压缩机吸入,以便在换热器412中提供额外的制冷,从而提高系统效率或可操作性。在替代性实施方式中,管线477中的物流可被引导至主换热器中的单独的、专用的回流再循环通道,其平行于换热器通道446延伸,出口与回流压缩机吸入流体连通。
[0056] 氮蒸汽物流482离开NRU塔430的顶部并且被送往换热器412中的氮蒸汽返回通道484,以向换热器中的换热器通道(其中流被冷却)提供制冷。所得加热的氮物流486被排放到大气或用于其他目的(例如燃料)。
[0057] 来自NRU塔430的底部液体物流432经由泵433作为液体物流434泵送到换热器412,在那里它进入底部液体加热通道435,用于为主天然气进料410提供制冷或冷凝负荷。所得甲烷蒸汽物流436被引导至压缩机,例如甲烷压缩机437。所得的物流被引导至后冷却器冷却装置438,在那里它被空气冷却或通过使用一些其他实用冷却系统(冷却水、丙烷等),以产生甲烷输出物流440。
[0058] 在图5所示的实施方式中,提供了热虹吸再沸器服务并且包括液体管线492,液体物流通过该液体管线492离开NRU塔430的底部并且行进至换热器412中的再沸器通道494。当在换热器412内提供制冷时,进入再沸器通道的液体被加热并至少部分蒸发。所得再沸器返回物流496离开换热器并返回至NRU塔430。
[0059] 本主题的多个方面可以单独或一起体现在下面描述和要求保护的方法、设备和系统中。这些方面可以单独使用或与在此描述的主题的其他方面结合使用,并且这些方面的描述一起不旨在排除单独使用这些方面或单独或以与所附的权利要求中不同组合的方式保护这些方面。
[0060] 虽然已经示出和描述了本发明的优选实施方式,但是对于本领域技术人员显而易见的是,在不脱离本发明的精神的情况下可以对其进行改变和修改,其范围由所附权利要求限定。