会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~

一种自平衡式耦合LNG冷能的新型液化空气储能系统

申请号 CN202410180701.1 申请日 2024-02-18 公开(公告)号 CN117722819A 公开(公告)日 2024-03-19
申请人 浙江浙能技术研究院有限公司; 发明人 胡达清; 董益华; 朱宝; 罗海华; 何郁晟;
摘要 本 发明 涉及物理储能系统技术领域,公开了一种自平衡式耦合LNG冷能的新型 液化 空气储能系统,包括空气压缩单元用于将空气进行 增压 ;热量回收再利用单元用于回收再利用空气压缩单元和系统外的热量;空气液化单元实现将空气压缩单元来的常温空气液化并存储;氮气制冷单元用于将LNG冷能传递至空气液化单元作为其冷源;闭式空气循环单元与空气膨胀释能单元耦合,利用存储液化空气的 气化 冷能,调节释能阶段的吸热量与系统回收的热量平衡,并为储箱压 力 平衡单元提供深冷空气;空气膨胀释能单元利用存储的液化空气和回收的热量,完成储能系统的释能过程;本发明提升了耦合LNG冷能的液化空气储能系统在实际应用后的适应能力和效率。
权利要求

1.一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,包括空气压缩单元、热量回收再利用单元、空气液化单元、氮气制冷单元、闭式空气循环单元、空气膨胀释能单元、储箱压平衡单元;
所述空气压缩单元用于对空气进行增压
所述热量回收再利用单元用于回收再利用空气压缩单元及系统以外的热量;
所述空气液化单元用于将空气压缩单元来的常温空气液化并存储;
所述氮气制冷单元用于将LNG冷能传递至空气液化单元作为其冷源;
所述闭式空气循环单元与空气膨胀释能单元耦合,利用存储液化空气的气化冷能,调节系统释能阶段的吸热量与系统回收的热量平衡,并为储箱压力平衡单元提供深冷空气;
所述空气膨胀释能单元利用存储的液化空气和回收的热量,完成储能系统的释能过程;
所述储箱压力平衡单元用于调节并维持液化空气储箱的压力。
2.根据权利要求1所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述空气压缩单元包括第一空气压缩机(101)、第二空气压缩机(102)、第三空气压缩机(103)、第一离合器(901)及发电电动机(801);所述第一空气压缩机(101)、第二空气压缩机(102)、第三空气压缩机(103)同轴布置,通过第一离合器(901)与发电电动机(801)连接,为压缩机提供动力;
净化处理后的空气依次通过第一空气压缩机(101)、第二空气压缩机(102)增压,升压后的空气能够与空气液化单元的深冷空气混合,再通过第三空气压缩机(103)继续增压至设计压力。
3.根据权利要求2所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述热量回收再利用单元包括第一换热器(301)、第二换热器(302)、第三换热器(303)、第四换热器(304)、第五换热器(305)、第六换热器(306)、燃烧炉换热器(307)、热/油箱(701)、冷水/油箱(702)、热水/油(503)及冷水/油泵(504);燃烧炉换热器(307)进口、出口分别连接冷水/油泵(504)出口、热水/油箱(701)进口,燃烧炉换热器(307)的燃烧气体为LNG站外排BOG;
在系统储能阶段,通过在第一空气压缩机(101)、第二空气压缩机(102)、第三空气压缩机(103)出口分别设置第一换热器(301)、第二换热器(302)、第三换热器(303)回收空气压缩过程中产生的热量;回收热量的储热工质为水或导热油,储热工质由冷水/油箱(702)流出,经冷水/油泵(504)提供动力,在第一换热器(301)、第二换热器(302)、第三换热器(303)中吸热后流至热水/油箱(701);
在系统释能阶段,储热工质由热水/油泵(503)升压后,在第四换热器(304)、第五换热器(305)、第六换热器(306)中加热空气,实现热量的再利用,换热降温后流回冷水/油箱(702)。
4.根据权利要求1所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述空气液化单元包括第一冷箱换热器(401)、第二冷箱换热器(402)、低温空气膨胀机(201)、空气气液分离器(703)、液化空气储箱(704)、第一低温(601)及第四低温阀门(604);
空气压缩单元来的常温空气依次经过第一冷箱换热器(401)、第二冷箱换热器(402)冷却至深冷空气,冷源由所述的氮气制冷单元提供;深冷空气进入低温空气膨胀机(201)中膨胀做功,深冷空气的温度进一步降低,完成空气的液化;液化后的空气进入空气气液分离器(703)中进行分离,分离后的液化空气从液化空气储箱(704)底部进入储存;
空气气液分离器(703)的液体出口与液化空气储箱(704)底部接口之间通过管道连接并在管道上设置第四低温阀门(604),空气气液分离器(703)的气体出口管道与液化空气储箱(704)顶部出口管道汇合后连接至所述空气压缩单元中,并在液化空气储箱(704)顶部出口支路上设置第一低温阀门(601);液化空气储箱(704)在充液时,第一低温阀门(601)、第四低温阀门(604)开启,液化空气储箱(704)和空气气液分离器(703)内的深冷空气流至所述的空气压缩单元中,实现压力能回收。
5.根据权利要求4所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述氮气制冷单元包括第三冷箱换热器(403)、第四冷箱换热器(404)、第五冷箱换热器(405)、氮气压缩机(106)、氮气膨胀机(202)、第三电机(803)及氮气循环机(501);所述氮气压缩机(106)、氮气膨胀机(202)、低温空气膨胀机(201)同轴布置,由第三电机(803)驱动;
以第三冷箱换热器(403)氮气入口为起点,低温氮气进入第三冷箱换热器(403)与一支LNG换冷成深冷氮气,进入氮气压缩机(106)增压,增压后的低温氮气进入第四冷箱换热器(404)和另一支LNG换冷成深冷氮气,深冷氮气进入氮气膨胀机(202)中膨胀,温度进一步降低;然后进入第二冷箱换热器(402)与低温空气交换冷量,出来低温氮气分成两支,一支经氮气循环风机(501)升压后进入第一冷箱换热器(401)与常温空气交换冷量成常温氮气,再进入第五冷箱换热器(405)与来自第三冷箱换热器(403)、第四冷箱换热器(404)的LNG换冷后,重新转化成低温氮气;再与第二冷箱换热器(402)出口的另一支低温氮气混合,进入第三冷箱换热器(403),完成制冷循环。
6.根据权利要求1所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述闭式空气循环单元包括第六冷箱换热器(406)、第七冷箱换热器(407)、第八冷箱换热器(408)、海水换热器(308)、第四空气压缩机(104)、第五空气压缩机(105)、第二电机(802)、第四换热器(304)及第一空气膨胀机(203);所述第四空气压缩机(104)、第五空气压缩机(105)同轴布置,由第二电机(802)驱动;
以第一空气膨胀机(203)的出口为起点,将第一空气膨胀机(203)出口空气的一支引入第六冷箱换热器(406)进行预冷,预冷后的空气进入第七冷箱换热器(407)继续冷却成深冷空气,深冷空气进入第四空气压缩机(104)增压后转化成低温空气,低温空气进入第八冷箱换热器(408)再次冷却成深冷空气;深冷空气进入第五空气压缩机(105)进一步增压转化成低温空气,第五空气压缩机(105)出口的低温空气与在第七冷箱换热器(407)、第八冷箱换热器(408)的吸热气化的液化空气相互混合,进入第六冷箱换热器(406)作为其冷源,吸热升温后再进入海水换热器(308)进一步吸热转化成常温空气,常温空气进入第四换热器(304)进一步加热至设计温度,而后进入第一空气膨胀机(203)膨胀做功,构成闭式空气循环。
7.根据权利要求6所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述空气膨胀释能单元与闭式空气循环单元相互耦合;空气膨胀释能单元包括液化空气泵(502)、第五低温阀门(605)、第一空气膨胀机(203)、第二空气膨胀机(204)、第三空气膨胀机(205)、第四换热器(304)、第五换热器(305)、第六换热器(306)、第二离合器(902)及发电电动机(801);第一空气膨胀机(203)、第二空气膨胀机(204)、第三空气膨胀机(205)同轴布置,通过第二离合器(902)与发电电动机(801)连接对外发电;
以空气液化单元的液化空气储箱(704)中的液化空气出口为循环起点,液化空气经液化空气泵(502)增压后分两支进入所述的闭式空气循环单元,分别作为第七冷箱换热器(407)和第八冷箱换热器(408)的冷源,吸热升温后与增压后的闭式循环单元的工质相互混合,经海水换热器(308)加热成常温空气,常温空气进入第四换热器(304)加热至设计温度,而后进入第一空气膨胀机(203)膨胀做功;第一空气膨胀机(203)出口的空气分成两支,完成闭式空气循环和开式空气循环的工质分离,一支进入闭式空气循环单元,另一支进入第五换热器(305)加热至设计温度,经第五换热器(305)加热后的空气进入第二空气膨胀机(204)膨胀做功后,进入第六换热器(306)加热至设计温度,经第六换热器(306)加热后的空气进入第三空气膨胀机(205)膨胀做功后,直接排入大气,完成开式空气循环。
8.根据权利要求1所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述储箱压力平衡单元包括第二低温阀门(602)及第三低温阀门(603),通过调节第二低温阀门(602)或第三低温阀门(603)开度,将第七冷箱换热器(407)或第八冷箱换热器(408)出口的深冷空气从液化空气储箱(704)顶部导入液化空气储箱(704),调节并维持其压力在设定值。
9.根据权利要求7所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述闭式空气循环单元的第五空气压缩机(105)与所述空气膨胀释能单元的液化空气泵(502)的出口压力一致,使两个单元的循环工质能相互融合。
10.根据权利要求8所述的一种自平衡式耦合LNG冷能的新型液化空气储能系统,其特征在于,所述储箱压力平衡单元能够调节液化空气储箱(704)的内部压力,使其高于液化空气的饱和压力。

说明书全文

一种自平衡式耦合LNG冷能的新型液化空气储能系统

技术领域

[0001] 本发明涉及物理储能系统技术领域,尤其涉及耦合LNG(液化天然气)冷能的液化空气储能系统。

背景技术

[0002] LNG已成为全球天然气贸易的重要形式,逐渐成为沿海天然气管网的重要气源,其蕴藏的冷能巨大。同时,近年来大量海上电并网发电,其间歇性特征给电网安全运行造成了不利影响,当前迫切需要大规模储能系统参与电网调节。在此背景下,一种耦合LNG冷能的液化空气的新型储能系统正被大量研究和开发。目前相关研究和发明对该储能系统在工程应用时面临难题重视不足,这些问题同样会制约其实际的能量转化效率:1)该系统的液化空气储箱(特别是高压储箱)压会随液化空气排出流量变化而在一定范围内波动;液化空气储箱与外界环境存在热传递,储存的部分饱和液化空气气化,当储箱排出的液化空气流量较大时,该部分气化的空气不足以填满液体流出而腾出的空间时,其储箱压力会下降,反之则储箱压力上升。储箱压力的降低不仅进一步导致储箱内饱和液化空气的气化,而且会引起液化空气的有效汽蚀余量降低,发生气蚀现象。这不仅会影响储能系统设备的安全运行而且会导致大量的液化工质损失,影响系统的能量转化效率。
[0003] 2)该系统回收空气压缩过程产生的热量,然后在释能阶段过程再利用,理论设计时能将回收的热量全部高效利用。但是在实际工程应用中,系统阻力等设计偏差会导致回收的热量偏离设计值。由于释能时吸热膨胀做功的工质(液化空气)质量为定值,当实际回收的压缩热高于设计值时,会导致热量得不到充分利用而浪费;当实际回收的压缩热低于设计值,会导致释能的空气加热不到设计的温度传热时能量品位降低。
[0004] 上述这些均会影响储能系统的实际效率,当储能系统耦合不定量的外部热源时,上述问题会更加严重。

发明内容

[0005] 本发明的目的是克服现有技术在工程应用时面临的难题,本发明提供了一种自平衡式耦合LNG冷能的新型液化空气储能系统,该系统可将液化空气储箱的压力自平衡在设定值;同时可根据实际回收热量,调节闭式空气循环的流量,使释能时的吸热量自平衡回收的热量。
[0006] 本发明的技术方案如下:一种自平衡式耦合LNG冷能的新型液化空气储能系统由空气压缩单元、热量回收再利用单元、空气液化单元、氮气制冷单元、闭式空气循环单元、空气膨胀释能单元、储箱压力平衡单元按流程依次相连组成:
空气压缩单元用于对空气进行增压
热量回收再利用单元用于回收再利用空气压缩单元及系统以外的热量;
空气液化单元用于将空气压缩单元来的常温空气(高压)液化并存储;
氮气制冷单元用于将LNG冷能传递至空气液化单元作为其冷源;
闭式空气循环单元与空气膨胀释能单元耦合,利用存储液化空气的气化冷能,调节系统释能阶段的吸热量与系统回收的热量平衡,并为储箱压力平衡单元提供深冷空气;
空气膨胀释能单元利用存储的液化空气和回收的热量,完成储能系统的释能过
程;
储箱压力平衡单元用于调节并维持液化空气储箱的压力。
[0007] 进一步的,空气压缩单元包括第一空气压缩机、第二空气压缩机、第三空气压缩机,第一离合器及发电电动机;空气压缩单元的第一空气压缩机、第二空气压缩机、第三空气压缩机同轴布置,通过第一离合器与发电电动机连接为压缩机提供动力,此时第二离合器断开。
[0008] 空气压缩单元工艺流程依次为:经净化系统(主要除去空气中二蒸气等成分)处理后的空气依次通过第一空气压缩机、第二空气压缩机增压,升压后的空气与空气液化流程来的深冷空气混合,再通过第三空气压缩机继续增压至设计压力。
[0009] 进一步的,热量回收再利用单元包括第一换热器、第二换热器、第三换热器、第四换热器、第五换热器、第六换热器、燃烧炉换热器、热水/油箱、冷水/油箱、热水/油泵、冷水/油泵。
[0010] 热量回收再利用单元工艺流程为:在系统储能阶段,通过在第一空气压缩机、第二空气压缩机、第三空气压缩机出口设置第一换热器、第二换热器、第三换热器回收压缩过程的产生的热量,回收热量的储热工质一般为水或导热油,其由冷水/油箱流出,经冷水/油泵提供动力,在换热器中吸热后流至热水/油箱。
[0011] 在系统释能阶段:热水/油由热水/油泵升压后,在第一空气膨胀机、第二空气膨胀机、第三空气膨胀机入口处的第四换热器、第五换热器、第六换热器中加热空气,实现热量的再利用,换热降温后流回冷水/油箱。
[0012] 热量回收再利用单元通过燃烧炉换热器回收LNG站外排BOG的热能,该热能受外界条件影响,具有不确定性。
[0013] 进一步的,空气液化单元包括第一冷箱换热器、第二冷箱换热器,低温空气膨胀机,空气气液分离器,液化空气储箱,第一低温、第四低温阀门;所述的空气液化单元的液化空气储箱一般为高压储箱。
[0014] 空气液化单元工艺流程为:空气压缩单元来的高压常温空气依次经过第一、第二冷箱换热器冷却至深冷空
气,冷源由所述的氮气制冷单元提供,然后进入低温空气膨胀机中膨胀做功,深冷空气的温度进一步降低,完成空气的液化;液化后的空气若为气液两相状态,需进入空气气液分离器进行分离,分离器后的液化空气从液化空气储箱底部进入储存;空气气液分离器的液体出口与液化空气储箱底部接口连接并设置第四低温阀门,空气气液分离器的气体出口管道与液化空气储箱顶部出口管道汇合后连接至所述空气压缩单元中,并在液化空气储箱顶部出口支路上设置第一低温阀门。
[0015] 空气液化单元的液化空气储箱在充液时,第一低温阀门、第四低温阀门开启,第二低温阀门、第三低温阀门、第五低温阀门关闭,液化空气储箱和空气气液分离器内的深冷空气可流至所述的空气压缩单元中第三空气压缩机入口。
[0016] 进一步的,氮气制冷单元包括第三冷箱换热器、第四冷箱换热器、第五冷箱换热器,氮气压缩机、氮气膨胀机、第三电机及氮气循环风机;氮气制冷单元的的氮气压缩机、氮气膨胀机和所述的空气液化单元的低温空气膨胀机同轴布置,通过第三电机驱动。
[0017] 氮气制冷单元的工艺:以第三冷箱换热器氮气入口为起点,低温氮气进入第三冷箱换热器与一支LNG换冷成深冷氮气,进入氮气压缩机增压,增压后的低温氮气进入第四冷箱换热器和另一支LNG换冷成深冷氮气,然后进入氮气膨胀机中膨胀,温度进一步降低,然后进入第二冷箱换热器与低温空气交换冷量,出来低温氮气分成两支,一支经氮气循环风机升压后进入第一冷箱换热器与常温空气交换冷量成常温氮气,再进入第五冷箱换热器与来自第三冷箱换热器、第四冷箱换热器的LNG换冷后,重新转化成为低温氮气;再与第二冷箱换热器出口的另一支低温氮气混合,进入第三冷箱换热器,完成制冷循环;若LNG在第五冷箱换热器升温后的温度仍然达不到天然气管网要求,可进一步进入海水换热器升温。
[0018] 进一步的,闭式空气循环单元包括第六冷箱换热器、第七冷箱换热器、第八冷箱换热器,海水换热器,第四空气压缩机、第五空气压缩机及配套的第二电机,第四换热器,第一空气膨胀机;闭式空气循环单元的第四、第五空气压缩机可同轴布置,一般为离心式压缩机,并由第二电机提供动力,一般可变频。
[0019] 闭式空气循环单元的工艺:以第一空气膨胀机的出口为起点,将其出口空气的一支引入第六冷箱换热器进行预冷,然后进入第七冷箱换热器继续冷却成深冷空气,其冷源为一支增压后的液化空气,然后进入第四空气压缩机增压后转化成低温空气,然后进入第八冷箱换热器再次冷却成深冷空气,其冷源为另一支增压后的液化空气,然后进入第五空气压缩机进一步增压,第五空气压缩机出口的低温空气与在第七冷箱换热器、第八冷箱换热器中吸热气化的液化空气相互混合,然后进入第六冷箱换热器作为其冷源,吸热升温后再进入海水换热器进一步吸热成常温空气,然后进入第四换热器进一步加热至设计温度,然后进入第一空气膨胀机膨胀做功,回到闭式空气循环的起点。
[0020] 进一步的,闭式空气循环单元的第五空气压缩机和所述的空气膨胀释能单元的液化空气泵的出口压力应一致,使两个单元的循环工质能相互融合。
[0021] 闭式空气循环单元自平衡所述的热量回收再利用单元回收热量的原理:通过改变变频电机的转速来调节闭式空气循环的流量,从而调节第四换热器的吸热量,使释能时的吸热量(第四、第五、第六换热器的吸热量)与回收的热量平衡。
[0022] 空气膨胀释能单元包括液化空气泵,第五低温阀门,第一、第二、第三空气膨胀机,第四换热器、第五换热器、第六换热器,第二离合器及发电电动机;空气膨胀释能单元中第一空气膨胀机、第二空气膨胀机、第三空气膨胀机可同轴布置,通过第二离合器与发电电动机连接对外发电,此时第一离合器断开。
[0023] 空气膨胀释能单元的热力循环为开式空气循环,工艺为:循环起点为储箱中的液化空气,其与闭式空气循环相互耦合,作为其冷源;液化空气经液化空气泵增压后分两支进入所述的闭式空气循环单元,分别作为第七冷箱换热器和第八冷箱换热器的冷源,吸热升温后与增压后的闭式循环的工质相互混合,经海水加热成常温空气,然后进入第四换热器加热至设计温度,然后进入第一空气膨胀机膨胀做功;第一空气膨胀机出口的空气分成两支,完成闭式空气循环和开式空气循环的工质分离,一支进入闭式空气循环单元,另一支进入第五换热器加热至设计温度,进入第二空气膨胀机膨胀做功;然后进入第六换热器加热至设计温度,然后进入第三空气膨胀机膨胀做功,然后直接排入大气完成开式空气循环。
[0024] 当空气膨胀释能单元工作时,第一低温阀门、第四低温阀门关闭、第五低温阀门开启。
[0025] 进一步的,储箱压力平衡单元包括第二低温阀门、第三低温阀门以及将第七冷箱换热器、第八冷箱换热器出口与液化空气储箱顶部连通的管道组成。
[0026] 储箱压力平衡单元的工作原理为:通过调节第二或第三低温阀门开度,可将第七冷箱换热器或第八冷箱换热器出口的深冷空气导入液化空气储箱,调节并维持其压力在设定值。
[0027] 当空气膨胀释能单元工作在设计出力时,第一空气膨胀机和第七冷箱换热器的设计出口压力应略高于液化空气储箱的设计压力,此时第三低温阀门关闭,通过调节第二低温阀门来调节并维持其压力在设定值。当所述的空气膨胀释能单元工作在部分出力时,其第一空气膨胀机和第七冷箱换热器出口压力随之降低,当其小于液化空气储箱压力设定值时,第二低温阀门关闭,通过调节第三低温阀门来调节并维持其压力在设定值。
[0028] 储箱压力平衡单元一般将液化空气储箱的压力调整到高于液化空气的饱和压力,使液化空气处于过冷状态。
[0029] 储箱压力平衡单元的深冷空气应从储箱顶部导入并设置整流器减少扰动。
[0030] 本发明有益效果为:本发明提升了耦合LNG冷能的液化空气储能系统在实际应用后的适应能力和效率,主要体现:1)设计的闭式空气循环单元通过调节其循环流量使释能时的吸热量自平衡系统回收的热量,避免回收热量的浪费或品位的降低;同时该设计还直接利用了液化空气气化过程的冷量并增加了第一空气膨胀机的流量,可提升其相对内效率相较于现有技术中的叠加ORC循环或蓄冷罐等利用方式,热力系统简单,技术成熟度高。
[0031] 2)通过将设计的闭式空气循环单元中深冷空气引入液化空气储箱,可调节并维持压力,不仅可减少储箱中液化空气的蒸发,提升其利用率;还能增加液化空气泵的有效气蚀余量,提升其布置的灵活性,减少工程投资。
[0032] 3)空气液化单元中分别设置第一冷箱换热器、第二冷箱换热器,而不是整合成一个冷箱换热器的原因是:空气在低温段的比热容小于深冷段,导致空气在低温段预冷所需的氮气流量小于深冷段,该设计可以明显减小空气在低温段换冷时所需的循环氮气流量,可降低系统阻力和相应风机的能耗。附图说明
[0033] 图1为本发明的系统流程图;图中:101、第一空气压缩机;102、第二空气压缩机;103、第三空气压缩机;104、第四空气压缩机;105、第五空气压缩机;106、氮气压缩机;201、低温空气膨胀机;202、氮气膨胀机;203、第一空气膨胀机;204、第二空气膨胀机;205、第三空气膨胀机;301、第一换热器;
302、第二换热器;303、第三换热器;304、第四换热器;305、第五换热器;306、第六换热器;
307、燃烧炉换热器;308、海水换热器;401、第一冷箱换热器;402、第二冷箱换热器;403、第三冷箱换热器;404、第四冷箱换热器;405、第五冷箱换热器;406、第六冷箱换热器;407、第七冷箱换热器;408、第八冷箱换热器;501、氮气循环风机;502、液化空气泵;503、热水/油泵;504、冷水/油泵;601、第一低温阀门;602、第二低温阀门;603、第三低温阀门;604、第四低温阀门;605、第五低温阀门;701、热水/油箱;702、冷水/油箱;703、空气气液分离器;704、液化空气储箱;801、发电电动机;802、第二电机;803、第三电机;901、第一离合器;902、第二离合器。

具体实施方式

[0034] 下面结合实施例对本发明做进一步描述。下述实施例的说明只是用于帮助理解本发明。应当指出,对于本技术领域的普通人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
[0035] 如图1所示,一种自平衡式耦合LNG冷能的新型液化空气储能系统主要通过空气压缩单元、热量回收再利用单元、空气液化单元、氮气制冷单元、闭式空气循环单元、空气膨胀释能单元、储箱压力平衡单元来实现其功能,本发明的所有换热器、冷箱换热器均为逆流换热器,深冷气体指其温度低于‑100℃,低温气体指其温度介于‑100℃和常温之间。
[0036] 空气压缩单元主要将空气增压,包含第一空气压缩机101、第二空气压缩机102、第三空气压缩机103、第一离合器901、发电电动机801;热量回收再利用单元主要回收再利用空气压缩单元的热量和系统外的热量,包含第一换热器301、第二换热器302、第三换热器303、第四换热器304、第五换热器305、第六换热器306、燃烧炉换热器307、热水/油箱701、冷水/油箱702、热水/油泵503、冷水/油泵504。
[0037] 具体的,第一空气压缩机101、第一换热器301空气侧、第二空气压缩机102、第二换热器302空气侧、第三空气压缩机103、第三换热器303的空气侧依次连接;具体的,冷水/油箱702出口与冷水/油泵504入口相连,其出口分三支分别与第一换热器301、第二换热器302、第三换热器303的水/油侧进口连接;第一换热器301、第二换热器302、第三换热器303的水/油侧出口汇合后连至热水/油箱701的进口;燃烧炉换热器307进口、出口分别连接至冷水/油泵504出口、热水/油箱701进口。
[0038] 具体的,第一空气压缩机101、第二空气压缩机102、第三空气压缩机103同轴布置,通过第一离合器901与发电电动机801连接,第二离合器902断开。
[0039] 具体的,燃烧炉换热器307的燃烧气体为LNG站外排BOG,LNG站产生的BOG量受外界条件影响,在LNG船卸料、LNG站外输流量较少等工况时BOG较多,其中大部分BOG经冷凝等流程回收,部分不能回收的BOG需燃烧后排放。所以经燃烧炉焚烧的BOG量和回收的热能受外界条件影响,具有不确定性。
[0040] 具体的,空气压缩单元中的压缩机的个数和压比、配套的换热器个数可根据工艺参数和设备价格优选,本实施例为三个或其他个数。
[0041] 空气液化单元主要实现将空气压缩单元来的常温空气液化并存储,包含第一冷箱换热器401、第二冷箱换热器402、低温空气膨胀机201、空气气液分离器703、液化空气储箱704、第一低温阀门601、第四低温阀门604。
[0042] 氮气制冷单元主要将LNG冷能传递至空气液化单元作为其冷源,包含第三冷箱换热器403、第四冷箱换热器404、第五冷箱换热器405,氮气压缩机106、氮气膨胀机202、第三电机803,氮气循环风机501。
[0043] 具体的,第一冷箱换热器401空气侧、第二冷箱换热器402空气侧、低温空气膨胀机201、空气气液分离器703进口按照气流向依次连接,第一冷箱换热器401空气侧进口与第三换热器303空气侧出口连接,空气气液分离器703的液体出口与液化空气储箱704底部接口连接并设置第四低温阀门604,空气气液分离器703的气体出口管道与液化空气储箱704顶部出口管道汇合后连接至所述的第三空气压缩机103进口,并在液化空气储箱704顶部出口支路上设置第一低温阀门601。
[0044] 具体的,第三冷箱换热器403氮气侧出口、氮气压缩机106、第四冷箱换热器404氮气侧、氮气膨胀机202、第二冷箱换热器402氮气侧进口按气流方向依次相连,第二冷箱换热器402氮气侧出口分两支管,一支连至氮气循环风机501进口,一支与第五冷箱换热器405氮气侧出口管道汇合后连至第三冷箱换热器403氮气侧进口,氮气循环风机501出口、第一冷箱换热器401氮气侧、第五冷箱换热器405氮气侧进口依次相连,构成了一个闭合的氮气制冷循环。第三冷箱换热器403与第四冷箱换热器404的LNG侧进口分别通过支路连至系统外的LNG升压泵后的管道,第三冷箱换热器403与第四冷箱换热器404的LNG侧出口汇合后连至第五冷箱换热器405的LNG侧进口,第五冷箱换热器405的LNG侧出口连接到系统外的天然气管网或海水加热器。
[0045] 具体的,氮气压缩机106、氮气膨胀机202和低温空气膨胀机201同轴布置,并由第三电机803驱动。
[0046] 具体的,空气液化单元中分别设置第一冷箱换热器401、第二冷箱换热器402,而不是整合成一个冷箱换热器的原因是空气在低温段的比热容小于深冷段,导致空气在低温段预冷所需的氮气流量小于深冷段,该设计可以明显减小空气在低温段换冷时所需的循环氮气流量,可降低系统阻力和相应风机的能耗。
[0047] 具体的,空气液化单元的液化空气储箱在充液时,第一低温阀门601、第四低温阀门604开启,第二低温阀门602、第三低温阀门603、第五低温阀门605关闭,液化空气储箱704和空气气液分离器703内的深冷空气可流至所述的空气压缩单元中的第三空气压缩机入口,回收该部分深冷气体的压力能。
[0048] 具体的,空气液化单元的液化空气储箱一般为高压储箱,可降低液化所需的外部冷能,减少所述的氮气制冷单元的功耗。
[0049] 闭式空气循环单元与空气膨胀释能单元耦合,主要利用存储液化空气的气化冷能,调节系统释能阶段的吸热量与系统回收的热量平衡,并为储箱压力平衡单元提供深冷空气,包含第六冷箱换热器406、第七冷箱换热器407、第八冷箱换热器408,海水换热器308,第四空气压缩机104、第五空气压缩机105及配套的第二电机802、第四换热器304、第一空气膨胀机203。
[0050] 空气膨胀释能单元与主要利用存储的液化空气和回收的热量,完成储能系统的释能过程,包含液化空气泵502,第五低温阀门605,第一空气膨胀机203、第二空气膨胀机204、第三空气膨胀机205、第四换热器304、第五换热器305、第六换热器306,第二离合器902及发电电动机801。
[0051] 具体的,第六冷箱换热器406热空气侧出口、第七冷箱换热器407热空气侧、第四空气压缩机104、第八冷箱换热器408热空气侧、第五空气压缩机105进口按气流方向依次相连,液化空气泵502进口与液化空气储箱704底部接口连接并设置第五低温阀门605,液化空气泵502出口分两支,分别连至第七冷箱换热器407与第八冷箱换热器408冷空气侧进口,第五空气压缩机105出口、第七冷箱换热器407和第八冷箱换热器408的冷空气侧出口汇合后连至第六冷箱换热器406冷空气侧进口,第六冷箱换热器406冷空气侧出口、海水换热器308空气侧、第四换热器304空气侧、第一空气膨胀机203进口依次相连,第一空气膨胀机203出口分两支,一支连至第六冷箱换热器406热空气侧进口,构成了闭式空气循环单元的闭合循环,另一支与第五换热器305空气侧、第二空气膨胀机204、第六换热器306空气侧、第三空气膨胀机205按气流方向依次相连,构成了空气膨胀释能单元的开式循环。
[0052] 具体的,热水/油箱701底部出口与热水/油泵503入口相连,热水/油泵503出口分三支,分别连至第四换热器304、第五换热器305、第六换热器306水/油侧进口,第四换热器304、第五换热器305、第六换热器306水/油侧出口汇合后连至冷水/油箱702的入口,构成了热量再利用循环。
[0053] 具体的,闭式空气循环单元的第四空气压缩机104、第五空气压缩机105同轴布置,一般为离心式压缩机,并由第二电机802驱动,一般可变频,通过调节离心式压缩机的转速来调节闭式空气循环单元的循环流量,实现其功能。
[0054] 具体的,闭式空气循环单元中冷源为储存的液化空气,经增压后分为两支,在冷箱换热器中吸热气化后,与闭式循环增压后的空气相互混合,吸收热量回收再利用单元储存的热量,对外释能。
[0055] 具体的,闭式空气循环单元的第五空气压缩机105和所述的空气膨胀释能单元的液化空气泵502的出口压力应一致,使开/闭式循环的工质能相互融合。
[0056] 具体的,闭式空气循环单元可直接利用液化空气气化过程中的冷量,热力系统简单,技术成熟度高;现有技术中一般通过叠加一组ORC循环或蓄冷罐来利用这部分冷量,相关技术难度大,尚不成熟,工程应用存在难度。
[0057] 具体的,空气膨胀释能单元工作时,第一低温阀门601、第四低温阀门604关闭、第五低温阀门605开启。
[0058] 具体的,空气膨胀释能单元中第一空气膨胀机203、第二空气膨胀机204、第三空气膨胀机205同轴布置,通过第二离合器902与发电电动机801连接对外发电,此时第一离合器901断开。
[0059] 储箱压力平衡单元调节并维持液化空气储箱的压力,包含第二低温阀门602、第三低温阀门603及连通管道。
[0060] 具体的,第二低温阀门602进、出口分别连至第七冷箱换热器407热空气侧出口、液化空气储箱704顶部的进口管道,第三低温阀门603进、出口分别连至第八冷箱换热器408的热空气侧出口、液化空气储箱704顶部进口管道。
[0061] 具体的,储箱压力平衡单元的工作原理为:通过调节第二低温阀门602或第三低温阀门603开度,可将第七冷箱换热器407或第八冷箱换热器408出口的深冷空气导入液化空气储箱704,调节并维持其压力在设定值。
[0062] 具体的,当空气膨胀释能单元工作在设计出力时,第一空气膨胀机203和第七冷箱换热器407的设计出口压力应略高于液化空气储箱704的设计压力,此时第三低温阀门603关闭,通过调节第二低温阀门602来调节并维持其压力在设定值。当空气膨胀释能单元工作在部分出力时,其第一空气膨胀机203和第七冷箱换热器407出口压力随之降低,当其小于液化空气储箱704压力设定值时,第二低温阀门602关闭,通过调节第三低温阀门603来调节并维持其压力在设定值。
[0063] 具体的,储箱压力平衡单元一般将液化空气储箱704的压力调整到高于液化空气的饱和压力,其储存的液化空气处于过冷状态,可减少蒸发损失,提升液化空储存效率。同时还可增加液化空气泵的有效气蚀余量,提升液化空气储箱704和液化空气泵502的布置灵活性,减少工程投资。
[0064] 具体的,储箱压力平衡单元的深冷空气应从液化空气储箱704顶部导入并设置整流器,该设计可减少进入空气的扰动,并远离储箱中气液分界面,减缓进入储箱的深冷空气与液化空气间的热传递,以减少液化空气的蒸发。
[0065] 上述实施例只是本发明的较佳实施例,并不是对本发明技术方案的限制,只要是不经过创造性劳动即可在上述实施例的基础上实现的技术方案,均应视为落入本发明专利的权利保护范围内。