会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • PMOS SiGe-last integration process
    • PMOS SiGe最后一个整合过程
    • US08435848B2
    • 2013-05-07
    • US13283817
    • 2011-10-28
    • Manoj Mehrotra
    • Manoj Mehrotra
    • H01L21/8238
    • H01L21/823814H01L21/823807
    • A process of forming a CMOS integrated circuit including integrating SiGe source/drains in the PMOS transistor after source/drain and LDD implants and anneals. A dual layer hard mask is formed on a polysilicon gate layer. The bottom layer prevents SiGe growth on the polysilicon gate. The top layer protects the bottom layer during source/drain spacer removal. A stress memorization layer may be formed on the integrated circuit prior to a source/drain anneal and removed prior to forming a SiGe blocking layer over the NMOS. SiGe spacers may be formed on the PMOS gate to laterally offset the SiGe recesses.
    • 一种形成CMOS集成电路的过程,包括在源极/漏极和LDD注入和退火之后在PMOS晶体管中集成SiGe源极/漏极。 双层硬掩模形成在多晶硅栅极层上。 底层可防止多晶硅栅极上的SiGe生长。 顶层在源/排水间隔物移除期间保护底层。 在源极/漏极退火之前,可以在集成电路上形成应力记忆层,并且在NMOS上形成SiGe阻挡层之前被去除。 SiGe间隔物可以形成在PMOS栅极上以横向偏移SiGe凹部。
    • 2. 发明申请
    • PMOS SiGe-LAST INTEGRATION PROCESS
    • PMOS SiGe-LAST整合过程
    • US20120108021A1
    • 2012-05-03
    • US13283817
    • 2011-10-28
    • Manoj Mehrotra
    • Manoj Mehrotra
    • H01L21/8238
    • H01L21/823814H01L21/823807
    • A process of forming a CMOS integrated circuit including integrating SiGe source/drains in the PMOS transistor after source/drain and LDD implants and anneals. A dual layer hard mask is formed on a polysilicon gate layer. The bottom layer prevents SiGe growth on the polysilicon gate. The top layer protects the bottom layer during source/drain spacer removal. A stress memorization layer may be formed on the integrated circuit prior to a source/drain anneal and removed prior to forming a SiGe blocking layer over the NMOS. SiGe spacers may be formed on the PMOS gate to laterally offset the SiGe recesses.
    • 一种形成CMOS集成电路的过程,包括在源极/漏极和LDD注入和退火之后在PMOS晶体管中集成SiGe源极/漏极。 在多晶硅栅极层上形成双层硬掩模。 底层可防止多晶硅栅极上的SiGe生长。 顶层在源/排水间隔物移除期间保护底层。 在源极/漏极退火之前,可以在集成电路上形成应力记忆层,并且在NMOS上形成SiGe阻挡层之前被去除。 SiGe间隔物可以形成在PMOS栅极上以横向偏移SiGe凹部。
    • 3. 发明申请
    • MULTIPLE INDIUM IMPLANT METHODS AND DEVICES AND INTEGRATED CIRCUITS THEREFROM
    • 多种植入式植入方法及装置及集成电路
    • US20100164003A1
    • 2010-07-01
    • US12344843
    • 2008-12-29
    • PUNEET KOHLIMANOJ MEHROTRA
    • PUNEET KOHLIMANOJ MEHROTRA
    • H01L27/088H01L29/78H01L21/336H01L21/8238
    • H01L21/823807H01L21/26513H01L21/823412H01L29/1083H01L29/66507H01L29/66537H01L29/6659H01L29/7833
    • An integrated circuit (IC) includes at least one NMOS transistor, wherein the NMOS transistor includes a substrate having a semiconductor surface, and a gate stack formed in or on the surface including a gate electrode on a gate dielectric, wherein a channel region is located in the semiconductor surface below the gate dielectric. A source and a drain region are on opposing sides of the gate stack. An In region having a retrograde profile is under at least a portion of the channel region. The retrograde profile includes (i) a surface In concentration at a semiconductor surface interface with the gate dielectric of less than 5×1016 cm−3, (ii) a peak In concentration at least 20 nm from the semiconductor surface below the gate dielectric, and wherein (iii) the peak In concentration is at least two (2) orders of magnitude higher than the In concentration at the semiconductor surface interface. A method to form an IC including at least one NMOS transistor includes implanting a first In implant at a first energy and a second In implant at a second energy, wherein the first In implant together with the second In implant form an In region having a retrograde profile under at least a portion of the channel region, and wherein the second energy is at least 5 keV more than the first energy.
    • 集成电路(IC)包括至少一个NMOS晶体管,其中NMOS晶体管包括具有半导体表面的衬底,以及形成在栅极电介质上的包括栅电极的表面中或其上的栅堆叠,其中沟道区域位于 在栅极电介质下方的半导体表面。 源极和漏极区域在栅极堆叠的相对侧上。 具有逆行轮廓的An In区域在通道区域的至少一部分的下方。 逆行曲线包括(i)与栅极电介质的半导体表面界面处的表面In浓度小于5×10 16 cm -3,(ii)从栅极电介质下方的半导体表面至少20nm的峰In浓度, 并且其中(iii)峰In浓度比半导体表面界面处的In浓度高至少两(2)个数量级。 一种形成包括至少一个NMOS晶体管的IC的方法,包括以第二能量以第一能量和第二In的植入物注入第一InNo,其中第一In植入物与第二In植入物一起形成具有逆行的In区域 在所述通道区域的至少一部分下形成,并且其中所述第二能量比所述第一能量多至少5keV。
    • 4. 发明授权
    • High threshold NMOS source-drain formation with As, P and C to reduce damage
    • 具有As,P和C的高阈值NMOS源极 - 漏极形成,以减少损伤
    • US07736983B2
    • 2010-06-15
    • US11972417
    • 2008-01-10
    • Puneet KohliManoj MehrotraShaoping Tang
    • Puneet KohliManoj MehrotraShaoping Tang
    • H01L21/336
    • H01L21/823412H01L21/26506H01L21/26586H01L21/823418H01L29/0847H01L29/6659H01L29/7833
    • Pipe defects in n-type lightly doped drain (NLDD) regions and n-type source/drain (NDS) regions are associated with arsenic implants, while excess diffusion in NLDD and NSD regions is mainly due to phosphorus interstitial movement. Carbon implantation is commonly used to reduce phosphorus diffusion in the NLDD, but contributes to gated diode leakage (GDL). In high threshold NMOS transistors GDL is commonly a dominant off-state leakage mechanism. This invention provides a method of forming an NMOS transistor in which no carbon is implanted into the NLDD, and the NSD is formed by a pre-amorphizing implant (PAI), a phosphorus implant and a carbon species implant. Use of carbon in the NDS allows a higher concentration of phosphorus, resulting in reduced series resistance and reduced pipe defects. An NMOS transistor with less than 1·1014 cm−2 arsenic in the NSD and a high threshold NMOS transistor formed with the inventive method are also disclosed.
    • n型轻掺杂漏极(NLDD)区域和n型源极/漏极(NDS)区域的管道缺陷与砷植入相关,而NLDD和NSD区域的过度扩散主要是由于磷间质运动。 碳注入通常用于减少NLDD中的磷扩散,但有助于栅极二极管泄漏(GDL)。 在高阈值NMOS晶体管中,GDL通常是主要的截止状态泄漏机制。 本发明提供了一种形成NMOS晶体管的方法,其中没有碳注入到NLDD中,并且NSD由前非晶化植入物(PAI),磷植入物和碳种植入物形成。 在NDS中使用碳可以提供更高浓度的磷,从而降低串联电阻并减少管道缺陷。 还公开了在NSD中具有小于1×1014cm-2砷的NMOS晶体管和由本发明方法形成的高阈值NMOS晶体管。
    • 5. 发明申请
    • Use of Poly Resistor Implant to Dope Poly Gates
    • 使用聚电阻植入物涂覆聚合物门
    • US20100112764A1
    • 2010-05-06
    • US12265358
    • 2008-11-05
    • Manoj MehrotraPuneet Kohli
    • Manoj MehrotraPuneet Kohli
    • H01L21/8238H01L21/8234
    • H01L27/0629
    • A process of fabricating an IC is disclosed in which a polysilicon resistor and a gate region of an MOS transistor are implanted concurrently. The concurrent implantation may be used to reduce steps in the fabrication sequence of the IC. The concurrent implantation may also be used to provide another species of transistor in the IC with enhanced performance. Narrow PMOS transistor gates may be implanted concurrently with p-type polysilicon resistors to increase on-state drive current. PMOS transistor gates over thick gate dielectrics may be implanted concurrently with p-type polysilicon resistors to reduce gate depletion. NMOS transistor gates may be implanted concurrently with n-type polysilicon resistors to reduce gate depletion, and may be implanted concurrently with p-type polysilicon resistors to provide high threshold NMOS transistors in the IC.
    • 公开了一种制造IC的工艺,其中同时注入多晶硅电阻器和MOS晶体管的栅极区域。 同时植入可用于减少IC制造顺序中的步骤。 同时植入也可用于在IC中提供另一种具有增强性能的晶体管。 可以与p型多晶硅电阻同时注入窄PMOS晶体管栅极,以增加导通状态驱动电流。 厚栅极电介质上的PMOS晶体管栅极可以与p型多晶硅电阻同时注入,以减少栅极耗尽。 NMOS晶体管栅极可以与n型多晶硅电阻同时注入以减少栅极耗尽,并且可以与p型多晶硅电阻同时注入,以在IC中提供高阈值NMOS晶体管。
    • 6. 发明申请
    • SEMICONDUCTOR DOPING WITH REDUCED GATE EDGE DIODE LEAKAGE
    • 具有降低栅极边缘二极管漏电的半导体器件
    • US20090127620A1
    • 2009-05-21
    • US11941129
    • 2007-11-16
    • Puneet KohliNandakumar MahalingamManoj MehrotraSong Zhao
    • Puneet KohliNandakumar MahalingamManoj MehrotraSong Zhao
    • H01L23/00H01L21/425
    • H01L21/26513H01L21/26506H01L29/165H01L29/6659H01L29/7833
    • Semiconductor doping techniques, along with related methods and structures, are disclosed that produce components having a more tightly controlled source and drain extension region dopant profiles without significantly inducing gate edge diode leakage. The technique follows the discovery that carbon, which may be used as a diffusion suppressant for dopants such as boron, may produce a gate edge diode leakage if present in significant quantities in the source and drain extension regions. As an alternative to placing carbon in the source and drain extension regions, carbon may be placed in the source and drain regions, and the thermal anneal used to activate the dopant may be relied upon to diffuse a small concentration of the carbon into the source and drain extension regions, thereby suppressing dopant diffusion in these regions without significantly inducing gate edge diode leakage. The increased concentration of carbon in the source and drain regions may permit heavier doping of the source/drain region, leading to improved gate capacitance.
    • 公开了半导体掺杂技术以及相关方法和结构,其产生具有更紧密控制的源极和漏极延伸区掺杂物分布而不显着引起栅极边缘二极管泄漏的元件。 该技术遵循发现,可以用作掺杂剂如硼的扩散抑制剂的碳可能在源极和漏极延伸区域中以大量存在而产生栅极边缘二极管泄漏。 作为在源极和漏极延伸区域中放置碳的替代方案,可以将碳放置在源极和漏极区域中,并且可以依靠用于激活掺杂剂的热退火将碳的少量浓度扩散到源中, 漏极延伸区域,从而抑制这些区域中的掺杂剂扩散,而不会显着引起栅极边缘二极管泄漏。 源极和漏极区域中增加的碳浓度可能允许源极/漏极区域的较重掺杂,导致改善的栅极电容。