会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明授权
    • Method for manufacturing semiconductor optical modulator and semiconductor optical modulator
    • 制造半导体光调制器和半导体光调制器的方法
    • US08731344B2
    • 2014-05-20
    • US13478280
    • 2012-05-23
    • Hideki Yagi
    • Hideki Yagi
    • G02B6/12G02B6/10G02F1/015H01L21/302B29D11/00B23B9/04H01L21/36
    • G02F1/025G02F1/2257G02F2201/066
    • A method for manufacturing a semiconductor optical modulator includes forming a p-type semiconductor layer on a main surface of a p-type semiconductor substrate; forming a pair of stripe-shaped masks on the p-type semiconductor layer, the stripe-shaped masks extending in a first direction along the main surface of the p-type semiconductor substrate and being spaced apart from each other; simultaneously forming a hole and a pair of stripe structures extending in the first direction by etching the p-type semiconductor layer through the stripe-shaped masks, the pair of stripe structures defining the hole; after removing the stripe-shaped masks, forming a buried layer in the hole; forming a core layer on the buried layer and the stripe structures; and forming an upper cladding layer on the core layer. The buried layer is made of a semiconductor material with a lower optical absorption loss than that of the p-type semiconductor layer.
    • 一种制造半导体光调制器的方法包括在p型半导体衬底的主表面上形成p型半导体层; 在p型半导体层上形成一对条形掩模,所述条形掩模沿着所述p型半导体衬底的主表面沿第一方向延伸并且彼此间隔开; 同时形成通过蚀刻p型半导体层通过条形掩模在第一方向延伸的孔和一对条纹结构,所述一对条纹结构限定该孔; 在去除条形掩模之后,在孔中形成掩埋层; 在掩埋层和条纹结构上形成核心层; 以及在所述芯层上形成上包层。 埋层由具有比p型半导体层低的光吸收损耗的半导体材料制成。
    • 54. 发明授权
    • Method for manufacturing silicon epitaxial wafer
    • 硅外延片的制造方法
    • US08697547B2
    • 2014-04-15
    • US13510336
    • 2010-11-11
    • Tomosuke Yoshida
    • Tomosuke Yoshida
    • H01L21/322H01L21/36H01L21/20
    • C30B25/20C30B25/10C30B29/06H01L21/02381H01L21/02532H01L21/0262
    • A method for manufacturing a silicon epitaxial wafer, including vapor-phase growing a silicon single crystal thin film on a silicon single crystal substrate in a hydrogen atmosphere while supplying a source gas; and cooling a silicon epitaxial wafer having the formed silicon single crystal thin film by calculating a temperature at which a standard value or a process average value of concentration of an evaluation target impurity present in the silicon single crystal thin film coincides with solubility limit concentration of the evaluation target impurity and setting a cooling rate of the silicon epitaxial wafer after the film formation to be less than 20° C./sec in a temperature range of at least plus or minus 50° C. from the calculated temperature.
    • 一种制造硅外延晶片的方法,包括在氢气气氛中在硅单晶衬底上气相生长硅单晶薄膜,同时供应源气体; 并且通过计算存在于硅单晶薄膜中的评价对象杂质的浓度的标准值或处理平均值与所述硅单晶薄膜的溶解度极限浓度一致的温度, 在成膜后将硅外延晶片的冷却速度从计算出的温度在至少±50℃的温度范围内设定为小于20℃/秒。
    • 56. 发明授权
    • Schottky barrier diode and method of forming a Schottky barrier diode
    • 肖特基势垒二极管和形成肖特基势垒二极管的方法
    • US08642453B2
    • 2014-02-04
    • US13679357
    • 2012-11-16
    • International Business Machines Corporation
    • Edward J. Nowak
    • H01L21/20H01L21/36
    • H01L29/872H01L29/66143
    • Disclosed is a silicon-on-insulator-based Schottky barrier diode with a low forward voltage that can be manufactured according to standard SOI process flow. An active silicon island is formed using an SOI wafer. One area of the island is heavily-doped with an n-type or p-type dopant, one area is lightly-doped with the same dopant, and an isolation structure is formed on the top surface above a junction between the two areas. A metal silicide region contacts the lightly-doped side of the island forming a Schottky barrier. Another discrete metal silicide region contacts the heavily-doped area of the island forming an electrode to the Schottky barrier (i.e., a Schottky barrier contact). The two metal silicide regions are isolated from each other by the isolation structure. Contacts to each of the discrete metal silicide regions allow a forward and/or a reverse bias to be applied to the Schottky barrier.
    • 公开了可以根据标准SOI工艺流程制造的具有低正向电压的基于硅绝缘体的肖特基势垒二极管。 使用SOI晶片形成活性硅岛。 该岛的一个区域被n型或p型掺杂物重掺杂,一个区域用相同的掺杂剂轻掺杂,并且在两个区域之间的结点上方的顶表面上形成隔离结构。 金属硅化物区域接触形成肖特基势垒的岛的轻掺杂侧。 另一个分立的金属硅化物区域接触形成与肖特基势垒(即,肖特基势垒接触)的电极的岛的重掺杂区域。 两个金属硅化物区域通过隔离结构彼此隔离。 与离散的金属硅化物区域中的每一个的接触允许将正向和/或反向偏压施加到肖特基势垒。
    • 60. 发明申请
    • Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor
    • 用液态硫族化物前体添加剂形成硫族化物薄膜的技术
    • US20130316519A1
    • 2013-11-28
    • US13479856
    • 2012-05-24
    • David Brian MitziXiaofeng Qiu
    • David Brian MitziXiaofeng Qiu
    • H01L21/36
    • H01L21/02422H01L21/02425H01L21/02491H01L21/02557H01L21/0256H01L21/02568H01L21/02628H01L31/032
    • Techniques for enhancing energy conversion efficiency in chalcogenide-based photovoltaic devices by improved grain structure and film morphology through addition of urea into a liquid-based precursor are provided. In one aspect, a method of forming a chalcogenide film includes the following steps. Metal chalcogenides are contacted in a liquid medium to form a solution or a dispersion, wherein the metal chalcogenides include a Cu chalcogenide, an M1 and an M2 chalcogenide, and wherein M1 and M2 each include an element selected from the group consisting of: Ag, Mn, Mg, Fe, Co, Cd, Ni, Cr, Zn, Sn, In, Ga, Al, and Ge. At least one organic additive is contacted with the metal chalcogenides in the liquid medium. The solution or the dispersion is deposited onto a substrate to form a layer. The layer is annealed at a temperature, pressure and for a duration sufficient to form the chalcogenide film.
    • 提供了通过改进的颗粒结构和通过将尿素添加到基于液体的前体中的膜形态来提高硫族化物系光伏器件的能量转换效率的技术。 一方面,形成硫族化物膜的方法包括以下步骤。 金属硫族化物在液体介质中接触以形成溶液或分散体,其中金属硫族化物包括Cu硫族化物,M1和M2硫族化物,并且其中M1和M2各自包括选自以下的元素:Ag, Mn,Mg,Fe,Co,Cd,Ni,Cr,Zn,Sn,In,Ga,Al和Ge。 至少一种有机添加剂与液体介质中的金属硫族化物接触。 将溶液或分散体沉积在基底上以形成层。 该层在温度,压力和足够长的时间内退火以形成硫族化物膜。