会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Circuitry and methodology to establish correlation between gate dielectric test site reliability and product gate reliability
    • 电路和方法建立栅介质测试点可靠性与产品门可靠性之间的相关性
    • US07298161B2
    • 2007-11-20
    • US11088953
    • 2005-03-24
    • Kerry BernsteinRonald J. BolamEdward J. NowakAlvin W. StrongJody J. Van HornErnest Y. Wu
    • Kerry BernsteinRonald J. BolamEdward J. NowakAlvin W. StrongJody J. Van HornErnest Y. Wu
    • G01R31/26
    • G01R31/2855
    • A method and system for predicting gate reliability. The method comprises the steps of stressing a gate dielectric test site to obtain gate dielectric test site data and using the test site data to predict gate reliability. Preferably, the test structure and the product structure are integrated in such a manner that a test site occupies some of the product area and the product itself occupies the remainder of the product area. A preferred methodology, more specifically, is as follows: (1) Test structures at start both in parallel stress mode and in ring oscillator or “product” mode; (2) Analyze the breakdown data as per the present state of the art for each of the areas based on the parallel stress mode; (3) Combine the above breakdown distributions using the area scaling to improve the confidence bounds of the Weibull slope of the cumulative distribution function; (4) Test the ring oscillators in the product mode to determine how many of the stress fails are also product fails as defined by an operational degradation; (5) Subdivide the failures to determine the relationship between the first fail, and the second fail, and the nth fail; (6) Investigate which stress fail, if not the first stress fail, is more likely to cause a product fail as defined by operational degradation; and (7) Based on the subdivision in step 5 and the results in step 6, make projection based on that fail which is most likely to cause fail. The methodology as outlined above bridges between dielectric stress fails and product degradation both in the case of each stress fail causing a product degradation, as well as in the case where more than one stress fail occurs before any product degradation occurs. And this relationship can be quantified.
    • 一种用于预测门可靠性的方法和系统。 该方法包括以下步骤:施加栅极电介质测试点以获得栅极介电测试点数据,并使用测试点数据来预测栅极的可靠性。 优选地,测试结构和产品结构以这样的方式集成,使得测试位置占据产品区域中的一些,并且产品本身占据产品区域的其余部分。 更具体地说,优选的方法如下:(1)并联应力模式和环形振荡器或“产品”模式下的测试结构; (2)根据平行应力模式分析每个区域的现有技术状况; (3)使用面积缩放结合上述分解分布,以提高累积分布函数的威布尔斜率的置信范围; (4)在产品模式下测试环形振荡器,以确定应力失效的数量是否也是由操作退化定义的产品故障; (5)细分失败,确定第一个失败与第二个失败之间的关系,第n个失败; (6)调查哪些压力失败,如果不是第一次压力失败,更有可能导致产品按作业退化所定义的失效; 和(7)基于步骤5中的细分和步骤6中的结果,基于最可能导致失败的失败进行投影。 如上所述的方法在介电应力失效和产物退化两者之间,在每个应力失效导致产物降解的情况下,以及在任何产物降解发生之前发生多于一个应力失效的情况下。 这种关系可以量化。
    • 4. 发明授权
    • Analytic experimental estimator for impact of voltage-overshoot of voltage waveform on dielectric failure/breakdown
    • 电压波形电压过冲对介质故障/击穿的影响的分析实验估计器
    • US08352900B1
    • 2013-01-08
    • US13356681
    • 2012-01-24
    • Ernest Y. Wu
    • Ernest Y. Wu
    • G06F17/50
    • G06F17/5036
    • A method tests integrated circuit devices to measure a voltage overshoot condition. The method determines an overshoot time proportion. The overshoot time proportion is the amount of time the voltage overshoot condition occurs relative to the amount of time the normal operating condition occurs during a full useful operating lifetime of the integrated circuit devices. The method also determines an overshoot failure proportion. The overshoot failure proportion comprises the amount of dielectric failures that occur during the voltage overshoot condition relative to the amount of dielectric failures that occur during the normal operating condition. The method calculates an allowed overshoot voltage based on the overshoot time proportion and the overshoot failure proportion. The method additionally calculates an average overshoot voltage of a voltage waveform and compares the average overshoot voltage to the allowed overshoot voltage to identify if the average overshoot voltage exceeds the allowed overshoot voltage.
    • 一种测试集成电路器件以测量电压过冲条件的方法。 该方法确定过冲时间比例。 过冲时间比例是相对于在集成电路器件的完全有用工作寿命期间发生正常工作状态的时间量,发生电压过冲状态的时间量。 该方法还确定过冲故障比例。 过冲故障比例包括在电压过冲状态期间相对于在正常工作状态期间发生的电介质故障的量发生的电介质故障的量。 该方法基于过冲时间比例和过冲故障比例计算允许的过冲电压。 该方法另外计算电压波形的平均过冲电压,并将平均过冲电压与允许的过冲电压进行比较,以确定平均过冲电压是否超过允许的过冲电压。
    • 7. 发明授权
    • Circuitry and methodology to establish correlation between gate dielectric test site reliability and product gate reliability
    • 电路和方法建立栅介质测试点可靠性与产品门可靠性之间的相关性
    • US06891359B2
    • 2005-05-10
    • US10248506
    • 2003-01-24
    • Kerry BernsteinRonald J. BolamEdward J. NowakAlvin W. StrongJody J. Van HornErnest Y. Wu
    • Kerry BernsteinRonald J. BolamEdward J. NowakAlvin W. StrongJody J. Van HornErnest Y. Wu
    • G01N27/00G01R27/00G01R31/02G01R31/28
    • G01R31/2855
    • A method and system for predicting gate reliability. The method comprises the steps of stressing a gate dielectric test site to obtain gate dielectric test site data and using the test site data to predict gate reliability. Preferably, the test structure and the product structure are integrated in such a manner that a test site occupies some of the product area and the product itself occupies the remainder of the product area. A preferred methodology, more specifically, is as follows: (1) Test structures at start both in parallel stress mode and in ring oscillator or “product” mode; (2) Analyze the breakdown data as per the present state of the art for each of the areas based on the parallel stress mode; (3) Combine the above breakdown distributions using the area scaling to improve the confidence bounds of the Weibull slope of the cumulative distribution function; (4) Test the ring oscillators in the product mode to determine how many of the stress fails are also product fails as defined by an operational degradation; (5) Subdivide the failures to determine the relationship between the first fail, and the second fail, and the nth fail; (6) Investigate which stress fail, if not the first stress fail, is more likely to cause a product fail as defined by operational degradation; and (7) Based on the subdivision in step 5 and the results in step 6, make projection based on that fail which is most likely to cause fail. The methodology as outlined above bridges between dielectric stress fails and product degradation both in the case of each stress fail causing a product degradation, as well as in the case where more than one stress fail occurs before any product degradation occurs. And this relationship can be quantified.
    • 一种用于预测门可靠性的方法和系统。 该方法包括以下步骤:施加栅极电介质测试点以获得栅极介电测试点数据,并使用测试点数据来预测栅极的可靠性。 优选地,测试结构和产品结构以这样的方式集成,使得测试位置占据产品区域中的一些,并且产品本身占据产品区域的其余部分。 更具体地说,优选的方法如下:(1)并联应力模式和环形振荡器或“产品”模式下的测试结构; (2)根据平行应力模式分析每个区域的现有技术状况; (3)使用面积缩放结合上述分解分布,以提高累积分布函数的威布尔斜率的置信范围; (4)在产品模式下测试环形振荡器,以确定应力失效的数量是否也是由操作退化定义的产品故障; (5)细分故障,确定第一个失败和第二个失败之间的关系,并且n th 失败; (6)调查哪些压力失败,如果不是第一次压力失败,更有可能导致产品按作业退化所定义的失效; 和(7)基于步骤5中的细分和步骤6中的结果,基于最可能导致失败的失败进行投影。 如上所述的方法在介电应力失效和产物退化两者之间,在每个应力失效导致产物降解的情况下,以及在任何产物降解发生之前发生多于一个应力失效的情况下。 这种关系可以量化。