会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • DIGITAL SIGNAL PROCESSING IN OPTICAL SYSTEMS USED FOR RANGING APPLICATIONS
    • 用于范围应用的光学系统中的数字信号处理
    • US20100042362A1
    • 2010-02-18
    • US12604846
    • 2009-10-23
    • Marc LevesqueFrancois BabinDaniel Cantin
    • Marc LevesqueFrancois BabinDaniel Cantin
    • G01B11/14G06F15/00
    • G01S7/484G01S7/4868G01S7/487G01S17/10
    • Methods and apparatuses for reducing the response time along with increasing the probability of ranging of optical rangefinders that digitize the signal waveforms obtained from the pulse echoes returned from various types of objects to be ranged, the pulse echoes being too weak to allow successful ranging from a single waveform or the objects being possibly in motion during the capture of the pulse echoes. In a first embodiment of the invention, the response time at close range of a digital optical rangefinder is reduced by using a signal averaging process wherein the number of data to be averaged varies with the distance according to a predetermined function. In a second embodiment of the invention, the probability of ranging objects in motion along the line of sight of a digital optical rangefinder is increased and the object velocity measured by performing a range shift of each acquired signal waveform prior to averaging. In a third embodiment of the invention, the signal waveforms acquired in the line of sight of a digital optical rangefinder are scanned over a predetermined zone and range shifted and averaged to allow for early detection and ranging of objects that enter in the zone.
    • 减少响应时间的方法和装置以及随着光学测距仪测距的可能性的增加,数字化从从不同类型的物体返回的脉冲回波获得的信号波形,脉冲回波太弱,不能从 在捕获脉冲回波期间,单个波形或物体可能运动。 在本发明的第一实施例中,通过使用信号平均处理来减少数字光学测距仪近距离处的响应时间,其中要平均的数据数量根据预定功能的距离而变化。 在本发明的第二实施例中,沿着数字光学测距仪的视线测量对象的运动概率增加,并且通过在平均之前执行每个获取的信号波形的范围偏移来测量对象速度。 在本发明的第三实施例中,在数字光学测距仪的视线中获取的信号波形在预定的区域上被扫描,并且移动和平均的范围,以允许早期检测和进入该区域的物体的测距。
    • 3. 发明授权
    • Method and apparatus for optical level sensing of agitated fluid surfaces
    • 搅拌流体表面的光学水平检测方法和装置
    • US07635854B1
    • 2009-12-22
    • US12169872
    • 2008-07-09
    • Francois Babin
    • Francois Babin
    • G01N15/06G01F23/00
    • G01F23/292G01F23/2928
    • A method and apparatus provide for non-contact optical measurement of the level of a fluid stored in a tank or container, the surface of the fluid being possibly agitated. The method processes numerically the digitized signal waveforms generated by a lidar apparatus based on a pulsed time-of-flight modulation scheme. A key step of the numerical processing is the computation of a waveform in which each data point is obtained from a statistical estimator of the variability of the amplitude signal echo measured at the distance from the lidar apparatus that corresponds to the rank of the data point in the waveform. The statistical estimator is preferably the standard deviation. By using a statistical estimator of the variability of the captured signal amplitude, the specific signal echo returned from an agitated fluid surface can be greatly amplified as compared to the signal echoes returned from any obstacle or medium that could be present along the path of the optical beam radiated by the lidar apparatus. The method then allows for an efficient retrieval of the useful signal echo from which the level of the fluid surface can be reliably measured with greater accuracy, particularly in situations where the useful signal echo would be buried in a strong signal echo returned from any optically scattering or absorbing medium that would fill in the volume of the tank above the fluid surface.
    • 一种方法和装置提供存储在罐或容器中的流体的水平的非接触式光学测量,所述流体的表面可能被搅动。 该方法基于脉冲时间飞行调制方案对由激光雷达装置产生的数字化信号波形进行数字处理。 数字处理的关键步骤是计算波形,其中从统计估计器获得每个数据点,该统计估计器在与激光雷达装置的距离处测量的幅度信号回波的变化对应于数据点的等级 波形。 统计估计器最好是标准偏差。 通过使用捕获的信号幅度的可变性的统计估计器,与从可能沿着光学路径存在的任何障碍物或介质返回的信号回波相比,从搅动的流体表面返回的特定信号回波可以被大大地放大 由激光雷达装置辐射的光束。 该方法然后允许有效的信号回波的有效检索,从该信号回波可以更精确地可靠地测量流体表面的水平,特别是在将有用信号回波埋在从任何光学散射返回的强信号回波的情况下 或吸收介质,其将填充在流体表面上方的罐的体积。
    • 5. 发明申请
    • METHOD AND APPARATUS FOR OPTICAL LEVEL SENSING OF AGITATED FLUID SURFACES
    • 用于光学水平感测的流化床表面的方法和装置
    • US20100006786A1
    • 2010-01-14
    • US12169872
    • 2008-07-09
    • Francois BABIN
    • Francois BABIN
    • G01F23/00
    • G01F23/292G01F23/2928
    • A method and apparatus provide for non-contact optical measurement of the level of a fluid stored in a tank or container, the surface of the fluid being possibly agitated. The method processes numerically the digitized signal waveforms generated by a lidar apparatus based on a pulsed time-of-flight modulation scheme. A key step of the numerical processing is the computation of a waveform in which each data point is obtained from a statistical estimator of the variability of the amplitude signal echo measured at the distance from the lidar apparatus that corresponds to the rank of the data point in the waveform. The statistical estimator is preferably the standard deviation. By using a statistical estimator of the variability of the captured signal amplitude, the specific signal echo returned from an agitated fluid surface can be greatly amplified as compared to the signal echoes returned from any obstacle or medium that could be present along the path of the optical beam radiated by the lidar apparatus. The method then allows for an efficient retrieval of the useful signal echo from which the level of the fluid surface can be reliably measured with greater accuracy, particularly in situations where the useful signal echo would be buried in a strong signal echo returned from any optically scattering or absorbing medium that would fill in the volume of the tank above the fluid surface.
    • 一种方法和装置提供存储在罐或容器中的流体的水平的非接触式光学测量,所述流体的表面可能被搅动。 该方法基于脉冲时间飞行调制方案对由激光雷达装置产生的数字化信号波形进行数字处理。 数字处理的关键步骤是计算波形,其中从统计估计器获得每个数据点,该统计估计器在与激光雷达装置的距离处测量的幅度信号回波的变化对应于数据点的等级 波形。 统计估计器最好是标准偏差。 通过使用捕获的信号幅度的可变性的统计估计器,与从可能沿着光学路径存在的任何障碍物或介质返回的信号回波相比,从搅动的流体表面返回的特定信号回波可以被大大地放大 由激光雷达装置辐射的光束。 该方法然后允许有效的信号回波的有效检索,从该信号回波可以更精确地可靠地测量流体表面的水平,特别是在将有用信号回波埋在从任何光学散射返回的强信号回波的情况下 或吸收介质,其将填充在流体表面上方的罐的体积。
    • 6. 发明申请
    • Short range lidar apparatus having a flat spatial response
    • 具有平坦空间响应的短距离激光雷达装置
    • US20070076201A1
    • 2007-04-05
    • US11240149
    • 2005-09-30
    • Francois BabinMarc Levesque
    • Francois BabinMarc Levesque
    • G01N21/00
    • G01N21/53G01N2021/1793G01N2021/4709G01S7/4816G01S17/95Y02A90/19
    • A flat spatial response LIDAR apparatus for detecting particles within a short range is provided. The apparatus includes a light source projecting a light beam which is back-scattered by the particles to be detected. The back-scattered light is received, detected and analyzed. A spatial filter spatially filters the received back-scattered light in order to flatten the spatial response of the apparatus, so that a same concentration of particles at any distance within the short range will generate a signal of substantially the same intensity. This is for example accomplished by a properly profiled mask disposed in front of the detector, or a plurality of spatially distributed waveguides. As a result, the LIDAR apparatus can compensate for the 1/r2 dependence, or other dependences of the back-scattered light on the distance r.
    • 提供了用于检测在短范围内的颗粒的平坦空间响应LIDAR装置。 该装置包括投射被待检测颗粒反向散射的光束的光源。 接收,检测和分析背散射光。 空间滤波器对接收到的反向散射光进行空间滤波,以平坦化装置的空间响应,使得在短距离内的任何距离处的相同浓度的颗粒将产生基本上相同强度的信号。 这例如通过设置在检测器前面的适当轮廓的掩模或多个空间分布的波导来实现。 结果,激光雷达装置可以补偿反射散射光对距离r的1 / r 2/2的依赖性或其他依赖性。
    • 7. 发明申请
    • DIGITAL SIGNAL PROCESSING IN OPTICAL SYSTEMS USED FOR RANGING APPLICATIONS
    • 用于范围应用的光学系统中的数字信号处理
    • US20090119044A1
    • 2009-05-07
    • US11936502
    • 2007-11-07
    • Marc LevesqueFrancois BabinDaniel Cantin
    • Marc LevesqueFrancois BabinDaniel Cantin
    • G06F19/00
    • G01S7/484G01S7/4868G01S7/487G01S17/10
    • Methods and apparatuses for reducing the response time along with increasing the probability of ranging of optical rangefinders that digitize the signal waveforms obtained from the pulse echoes returned from various types of objects to be ranged, the pulse echoes being too weak to allow successful ranging from a single waveform or the objects being possibly in motion during the capture of the pulse echoes. In a first embodiment of the invention, the response time at close range of a digital optical rangefinder is reduced by using a signal averaging process wherein the number of data to be averaged varies with the distance according to a predetermined function. In a second embodiment of the invention, the probability of ranging objects in motion along the line of sight of a digital optical rangefinder is increased and the object velocity measured by performing a range shift of each acquired signal waveform prior to averaging. In a third embodiment of the invention, the signal waveforms acquired in the line of sight of a digital optical rangefinder are scanned over a predetermined zone and range shifted and averaged to allow for early detection and ranging of objects that enter in the zone.
    • 减少响应时间的方法和装置以及随着光学测距仪测距的可能性的增加,数字化从从不同类型的物体返回的脉冲回波获得的信号波形,脉冲回波太弱,不能从 在捕获脉冲回波期间,单个波形或物体可能运动。 在本发明的第一实施例中,通过使用信号平均处理来减少数字光学测距仪近距离处的响应时间,其中要平均的数据数量根据预定功能的距离而变化。 在本发明的第二实施例中,沿着数字光学测距仪的视线测量对象的运动概率增加,并且通过在平均之前执行每个获取的信号波形的范围偏移来测量对象速度。 在本发明的第三实施例中,在数字光学测距仪的视线中获取的信号波形在预定的区域上被扫描,并且移动和平均的范围,以允许早期检测和进入该区域的物体的测距。
    • 8. 发明申请
    • METHOD FOR DETECTING OBJECTS WITH VISIBLE LIGHT
    • 用可见光检测物体的方法
    • US20080309914A1
    • 2008-12-18
    • US12141282
    • 2008-06-18
    • Daniel CantinPascal GallantFrancois Babin
    • Daniel CantinPascal GallantFrancois Babin
    • G01C3/08G01N21/47
    • G01S17/10
    • A method for detecting an object using visible light comprises providing a visible-light source having a function of illuminating an environment. The visible-light source is driven to emit visible light in a predetermined mode, with visible light in the predetermined mode being emitted such that the light source maintains said function of illuminating an environment. A reflection/backscatter of the emitted visible light is received from an object. The reflection/backscatter is filtered over a selected wavelength range as a function of a desired range of detection from the light source to obtain a light input. The presence or position of the object is identified with the desired range of detection as a function of the light input and of the predetermined mode.
    • 使用可见光检测物体的方法包括提供具有照亮环境的功能的可见光源。 驱动可见光源以预定模式发射可见光,以预定模式的可见光被发射,使得光源保持照亮环境的功能。 从物体接收发射的可见光的反射/反向散射。 反射/反向散射在所选波长范围内作为来自光源的期望的检测范围的函数进行滤波以获得光输入。 物体的存在或位置用作为光输入和预定模式的函数的期望的检测范围来识别。