会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Semiconductor device and manufacturing method thereof
    • 半导体装置及其制造方法
    • US08067289B2
    • 2011-11-29
    • US12629543
    • 2009-12-02
    • Il-Yong Park
    • Il-Yong Park
    • H01L21/336
    • H01L29/7816H01L29/0653H01L29/7838
    • A semiconductor device and a method of manufacturing a semiconductor device. A semiconductor device may include an epitaxial layer over a semiconductor substrate, a first well region over a epitaxial layer, a first isolation layer and/or a third isolation layer at opposite sides of said first well region and/or a second isolation layer over a first well region between first and third isolation layers. A semiconductor device may include a gate over a second isolation layer. A semiconductor device may include a second well region over a first well region between a third isolation layer and a gate, a first ion-implanted region over a second well region between a third isolation layer and a gate, and/or a second ion-implanted region between a first ion-implanted region and a gate. A semiconductor device may include an accumulation channel between a second well region and a gate.
    • 半导体器件和半导体器件的制造方法。 半导体器件可以包括在半导体衬底上的外延层,外延层上的第一阱区,在所述第一阱区的相对侧的第一隔离层和/或第三隔离层和/或第一隔离层 第一和第三隔离层之间的第一阱区。 半导体器件可以包括在第二隔离层上的栅极。 半导体器件可以包括在第三隔离层和栅极之间的第一阱区域上的第二阱区域,在第三隔离层和栅极之间的第二阱区域上的第一离子注入区域和/或第二离子注入区域, 注入区域在第一离子注入区域和栅极之间。 半导体器件可以包括在第二阱区域和栅极之间的累积通道。
    • 5. 发明授权
    • Low power and high density source driver and current driven active matrix organic electroluminescent device having the same
    • 具有相同功能的低功率和高密度源极驱动器和电流驱动的有源矩阵有机电致发光器件
    • US07391393B2
    • 2008-06-24
    • US10739735
    • 2003-12-17
    • Yil-Suk YangByung-Doo KimJong-Dae KimTae-Moon RohDae-Woo LeeByoung-Gon YuIl-Yong ParkSung-ku Kwon
    • Yil-Suk YangByung-Doo KimJong-Dae KimTae-Moon RohDae-Woo LeeByoung-Gon YuIl-Yong ParkSung-ku Kwon
    • G09G3/30
    • G09G3/3283G09G3/3241G09G2310/027G09G2330/021
    • Disclosed is a low power and high density source driver and a current driven active matrix organic electroluminescent device having the same, in which all elements operate at a normal voltage and all circuits of the source driver are shielded from a high voltage of a panel. The source driver includes: a shift register for generating an enable signal for storing data; a data latch circuit for storing digital data inputted from an exterior; a line latch circuit for sequentially storing the data in response to the enable signal and outputting the stored data in parallel at one time in response to a load signal; a current type digital-to-analog converter for converting the digital data outputted from the line latch circuit into an analog signal, the analog signal being outputted in a form of a current signal; and a high voltage shield circuit for transferring the output of the current digital-to-analog converter to source lines of an external panel and for shielding internal circuits from a high voltage of the panel. The shift register, the data latch circuit, the line latch circuit, the current type digital-to-analog converter and the high voltage shield circuit are driven at a normal voltage.
    • 公开了一种低功率和高密度源极驱动器以及具有这种驱动器的电流驱动有源矩阵有机电致发光器件,其中所有元件都工作在正常电压,并且源极驱动器的所有电路都屏蔽了面板的高电压。 源极驱动器包括:移位寄存器,用于产生用于存储数据的使能信号; 数据锁存电路,用于存储从外部输入的数字数据; 行锁存电路,用于响应于使能信号顺序地存储数据并响应于负载信号一次并行地输出存储的数据; 用于将从线路锁存电路输出的数字数据转换为模拟信号的电流型数模转换器,模拟信号以电流信号的形式输出; 以及用于将当前数模转换器的输出传送到外部面板的源极线并用于屏蔽内部电路与面板的高电压的高压屏蔽电路。 移位寄存器,数据锁存电路,线路锁存电路,电流型数模转换器和高压屏蔽电路以正常电压驱动。
    • 7. 发明授权
    • Method for fabricating power semiconductor device having trench gate structure
    • US06852597B2
    • 2005-02-08
    • US10071127
    • 2002-02-08
    • Il-Yong ParkJong Dae KimSang Gi KimJin Gun KooDae Woo LeeRoh Tae MoonYang Yil Suk
    • Il-Yong ParkJong Dae KimSang Gi KimJin Gun KooDae Woo LeeRoh Tae MoonYang Yil Suk
    • H01L21/336H01L29/417H01L29/78
    • H01L29/7813H01L29/41766H01L29/41775H01L29/7802
    • A method for fabricating a power semiconductor device having a trench gate structure is provided. An epitaxial layer of a first conductivity type having a low concentration and a body region of a second conductivity type are sequentially formed on a semiconductor substrate of the first conductivity type having a high concentration. An oxide layer pattern is formed on the body region. A first trench is formed using the oxide layer pattern as an etching mask to perforate a predetermined portion of the body region having a first thickness. A body contact region of the second conductivity type having a high concentration is formed to surround the first trench by impurity ion implantation using the oxide layer pattern as an ion implantation mask. First spacer layers are formed to cover the sidewalls of the first trench and the sidewalls of the oxide layer pattern. A second trench is formed using the oxide layer pattern and the first spacer layers as etching masks to perforate a predetermined portion of the body region having a second thickness greater than the first thickness. A source region of the first conductivity type having a high concentration is formed to surround the second trench by impurity ion implantation using the oxide layer pattern and the first spacer layers as ion implantation masks. Second spacer layers are formed to cover the sidewalls of the second trench and the sidewalls of the first spacer layers. A third trench is formed to a predetermined depth of the epitaxial layer using the oxide layer pattern, the first spacer layers, and the second spacer layers as etching masks. A gate insulating layer is formed in the third trench. A gate conductive pattern is formed in the gate insulating layer. An oxide layer is formed on the gate conductive layer pattern. The first and second spacer layers are removed. A first metal electrode layer is formed to be electrically connected to the source region and the body contact region. A second metal electrode layer is formed to be electrically connected to the gate conductive layer pattern. A third metal electrode layer is formed to be electrically connected to the semiconductor substrate.
    • 9. 发明申请
    • SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
    • 半导体器件及其制造方法
    • US20100084708A1
    • 2010-04-08
    • US12571468
    • 2009-10-01
    • Il-Yong Park
    • Il-Yong Park
    • H01L29/78H01L21/336
    • H01L29/7816H01L29/0653H01L29/0873H01L29/0878H01L29/402H01L29/66689H01L29/7817
    • A semiconductor device includes a first conductivity-type deep well formed in a substrate, a plurality of device isolation layers formed in the substrate in which the first conductivity-type deep well is formed, a second conductivity-type well formed on a portion of the first conductivity-type deep well between two of the device isolation layers, a first gate pattern formed over a portion of the second conductivity-type well, a second gate pattern formed over one of the device isolation layers, a source region formed in an upper surface of the second conductivity-type well to adjoin a first side of the first gate pattern, a first drain region formed to include the interface between an upper surface of the second conductivity-type well adjoining a second side of the first gate pattern and an upper surface of the first conductivity-type deep well adjoining the second side of the first gate pattern, and a second drain region formed in an upper surface of the first conductivity-type deep well to be spaced from the second conductivity-type well.
    • 半导体器件包括在衬底中形成的第一导电型深阱,形成在其中形成有第一导电型深阱的衬底中的多个器件隔离层,形成在第一导电型阱的一部分上的第二导电型阱 两个器件隔离层之间的第一导电型深阱,形成在第二导电类型阱的一部分上的第一栅极图案,形成在器件隔离层之一上的第二栅极图案,形成在上部 所述第二导电类型阱的表面邻接所述第一栅极图案的第一侧;第一漏极区,形成为包括所述第二导电类型阱的与所述第一栅极图案的第二侧相邻的上表面和 与第一栅极图案的第二侧邻接的第一导电型深阱的上表面和形成在第一导电类型深w的上表面中的第二漏极区 以与第二导电型阱间隔开。
    • 10. 发明申请
    • LATERAL DOUBLE DIFUSED METAL OXIDE SEMICONDUCTOR TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME
    • 横向双向扩散金属氧化物半导体晶体管及其制造方法
    • US20090166736A1
    • 2009-07-02
    • US12344544
    • 2008-12-28
    • Il-Yong Park
    • Il-Yong Park
    • H01L29/808H01L21/336B05C11/00
    • H01L29/7835H01L29/0847H01L29/0878H01L29/4236H01L29/42368H01L29/42376
    • A lateral double diffused metal oxide semiconductor a lateral double diffused metal oxide semiconductor (LDMOS) transistor which may include a first conductive type semiconductor substrate and a shallow trench isolation film defining an active region in the substrate. A second conductive type body region may be disposed over a portion of the top of the semiconductor substrate. A first conductive type source region may be disposed in the top of the body region. A first conductive type extended drain region may be disposed over a portion of the top of the semiconductor substrate and spaced from the body region. A gate dielectric film covers surfaces of the second conductive type body region and first conductive type source region and a portion of the top of the first conductive type semiconductor substrate. A gate conductive film may extend from the first conductive type source region, over the gate dielectric film, over the shallow trench isolation film, and inside the shallow trench isolation film. Therefore, embodiments prevent the disturbance in flow of current in an on-state by the STI, making it possible to obtain improved on-state resistance characteristics.
    • 横向双扩散金属氧化物半导体,横向双扩散金属氧化物半导体(LDMOS)晶体管,其可以包括在衬底中限定有源区的第一导电类型半导体衬底和浅沟槽隔离膜。 第二导电类型体区域可以设置在半导体衬底的顶部的一部分上方。 第一导电型源极区域可以设置在身体区域的顶部。 第一导电类型延伸漏极区域可以设置在半导体衬底的顶部的一部分上并与身体区域间隔开。 栅介电膜覆盖第二导电类型体区域和第一导电类型源极区域的表面和第一导电类型半导体衬底的顶部的一部分。 栅极导电膜可以从浅沟槽隔离膜上的第一导电型源极区域,栅极电介质膜上方,以及浅沟槽隔离膜内部延伸。 因此,实施例通过STI防止导通状态下的电流流动的干扰,从而可以获得改善的导通状态电阻特性。