会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Ultraprecision Non-Contact Three-Dimensional Probing System Based On Spherical Capacitive Plate
    • 基于球面电容板的超精密非接触三维探测系统
    • US20120062246A1
    • 2012-03-15
    • US13128518
    • 2010-01-18
    • Jiubin TanJunning CuiJiwen Cui
    • Jiubin TanJunning CuiJiwen Cui
    • G01B7/00G01B7/02G01B7/14
    • G01B7/012
    • An ultraprecision non-contact three-dimensional probing system based on a spherical capacitive plate has a probe (12) which comprises a spherical probing head (5), a stylus pipe (6), an active shielding pipe (8), a signal conducting rod (7), an insulating element (9), a stylus holder (10) and a probe body (11). The stylus pipe (6), the active shielding pipe (8) and the signal conducting rod (7) are coaxially assembled, and they are insulated against each other with the insulating element (9). The spherical probing head (5) is mounted at one end of the insulating element (9), and it has a spherical capacitive plate over its surface. The capacitive signal coming from the spherical capacitive plate is outputted through the signal conducting rod (7). The active shielding pipe (8) is driven by the signal converting and processing circuit (13) of the probing system to maintain equipotential with the signal conducting rod (7), and so the influence of parasitic capacitance and spatial electromagnetic interference can be eliminated.
    • 基于球面电容板的超精密非接触三维探测系统具有探针(12),其包括球形探测头(5),触针管(6),主动屏蔽管(8),信号导通 杆(7),绝缘元件(9),触笔支架(10)和探针主体(11)。 触针管(6),有源屏蔽管(8)和信号导线杆(7)同轴组装,并与绝缘元件(9)彼此绝缘。 球形探测头(5)安装在绝缘元件(9)的一端,并且其表面上具有球形电容板。 来自球面电容板的电容信号通过信号导通棒(7)输出。 主动屏蔽管(8)由探测系统的信号转换和处理电路(13)驱动,以保持与信号导通棒(7)的等电位,从而可以消除寄生电容和空间电磁干扰的影响。
    • 2. 发明授权
    • Ultraprecision non-contact three-dimensional probing system based on spherical capacitive plate
    • 基于球面电容板的超精密非接触三维探测系统
    • US08816702B2
    • 2014-08-26
    • US13128518
    • 2010-01-18
    • Jiubin TanJunning CuiJiwen Cui
    • Jiubin TanJunning CuiJiwen Cui
    • G01R27/26G01B7/012
    • G01B7/012
    • A non-contact three-dimensional probing system based on a spherical capacitive plate has a probe including a spherical probing head (5), a stylus pipe (6), an active shielding pipe (8), a signal conducting rod (7), an insulating element (9), a stylus holder (10) and a probe body (11). The spherical probing head (5) is mounted at one end of the insulating element (9), and it has a spherical capacitive plate over its surface. The capacitive signal coming from the spherical capacitive plate is outputted through the signal conducting rod (7). The active shielding pipe (8) is driven by the signal converting and processing circuit (13) of the probing system to maintain equipotential with the signal conducting rod (7), and so the influence of parasitic capacitance and spatial electromagnetic interference can be eliminated.
    • 基于球面电容板的非接触三维探测系统具有探针,其包括球形探测头(5),触针管(6),主动屏蔽管(8),信号导通杆(7), 绝缘元件(9),触针支架(10)和探针主体(11)。 球形探测头(5)安装在绝缘元件(9)的一端,并且其表面上具有球形电容板。 来自球面电容板的电容信号通过信号导通棒(7)输出。 主动屏蔽管(8)由探测系统的信号转换和处理电路(13)驱动,以保持与信号导通棒(7)的等电位,从而可以消除寄生电容和空间电磁干扰的影响。
    • 3. 发明授权
    • Photoelectric autocollimation method and apparatus based on beam drift compensation
    • 基于光束漂移补偿的光电自动准直方法和装置
    • US08724108B2
    • 2014-05-13
    • US13701487
    • 2012-01-18
    • Jiubin TanFan ZhuJiwen Cui
    • Jiubin TanFan ZhuJiwen Cui
    • G01J4/00
    • G02B27/30G02B5/122G02B27/283
    • Photoelectric autocollimation methods and apparatuses based on beam drift compensation are provided. The methods and apparatuses can be used to achieve a high autocollimation angle measurement accuracy. The apparatuses includes an autocollimator, a measurement mirror (12a), a beam drift monitoring and separating unit, a beam steering device (8), and a data processing controller (7). The beam drift monitoring and separating unit generate a reference beam with the same drift as the measurement beam. The measurement beam carries both angular deflection information of the measurement mirror and the angular beam drift information, while the reference beam carries only the angular beam drift information. The data processing controller gives out a signal to the beam steering device in real-time according to the magnitude of drift of the reference beam, to compensate the drift of the measurement beam.
    • 提供了基于光束漂移补偿的光电自动准直方法和装置。 该方法和装置可用于实现高自动准直角测量精度。 该装置包括自动准直仪,测量镜(12a),光束漂移监测和分离单元,光束转向装置(8)和数据处理控制器(7)。 光束漂移监测和分离单元产生与测量光束相同漂移的参考光束。 测量光束承载测量镜的角偏转信息和角光束漂移信息,而参考光束仅承载角光束漂移信息。 数据处理控制器根据参考光束漂移的大小实时地向波束转向装置发出信号,以补偿测量光束的漂移。
    • 4. 发明授权
    • Micro-cavity measuring equipment and method based on double optical fiber coupling
    • 基于双光纤耦合的微腔测量设备及方法
    • US07733477B2
    • 2010-06-08
    • US11916861
    • 2006-07-19
    • Jiubin TanJiwen Cui
    • Jiubin TanJiwen Cui
    • G01N21/00
    • G01B5/201G01B11/007
    • A micro-cavity measuring equipment based on double optical fiber coupling includes a sight and transmitter, a controller, and a length measuring device. The equipment detects small changes in the position of an object with respect to a probe from a moment when the sight and transmitter starts working to another moment when the sight and transmitter stops working. The controller has a program to automatically control the whole measuring process. The measuring equipment is characterized in that the sight and transmitter consists of a laser unit, a data collecting and processing unit, and a double optical fiber coupling unit with its ends of incident and effluent optical fibers fixed on a coupler. A micro-cavity measuring method based on double optical fiber coupling consists of the following steps: inserting the probe into the micro-cavity and moving it in the measuring direction; sending signals to the length measuring device by the sight and transmitter to cause the length measuring device to record the corresponding position of the probe when the probe is contact with the sides of the micro-cavity; and then calculating the dimensions of the micro-cavity.
    • 基于双光纤耦合的微腔测量设备包括瞄准器和发射器,控制器和长度测量装置。 当瞄准器和发射器开始工作时,当瞄准器和变送器停止工作时,设备可以检测物体相对于探头位置的微小变化。 控制器具有自动控制整个测量过程的程序。 测量设备的特征在于,瞄准器和发射器由激光单元,数据采集处理单元和双光纤耦合单元组成,其入射光纤和流出光纤的端部固定在耦合器上。 基于双光纤耦合的微腔测量方法包括以下步骤:将探头插入微腔并沿测量方向移动; 通过瞄准器和变送器将信号发送到长度测量装置,以使得当探针与微腔的侧面接触时,长度测量装置记录探针的相应位置; 然后计算出微腔的尺寸。
    • 5. 发明授权
    • Micro focal-length collimation based micro-cavity measuring method and detecting equipment thereof
    • 基于微焦距准直的微腔测量方法及其检测设备
    • US08559023B2
    • 2013-10-15
    • US13260464
    • 2009-11-12
    • Jiubin TanFei WangJiwen Cui
    • Jiubin TanFei WangJiwen Cui
    • G01B11/00
    • G01B5/012G01B11/007
    • A micro-cavity measuring method and equipment based on micro focal-length collimation are provided. The equipment can be used to measure irregular micro-cavities and “sub-macro” micro-cavities. Wherein a cylindrical or spherical lens with micro focal-length is combined with a fiber probe(11,12) to form a collimating and imaging optical system of a point light source(8), and the collimating and imaging optical system transforms the two or three dimensional movement of the fiber probe(11,12) into a change in image ultra-highly sensitively. A lot of advantages are obtained, i.e., micro measuring force, high aspect ratio, easy miniaturization, high resolution, simple construction and high speed.
    • 提供了基于微焦距准直的微腔测量方法和设备。 该设备可用于测量不规则微孔和“亚宏”微腔。 其中具有微焦距的圆柱形或球面透镜与光纤探针(11,12)组合以形成点光源(8)的准直和成像光学系统,并且准直和成像光学系统将两个或 纤维探针(11,12)的三维运动变成超高灵敏度的图像变化。 获得了许多优点,即微测量力,高纵横比,容易小型化,高分辨率,简单结构和高速度。