会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • DOWNHOLE DYNAMICS MEASUREMENTS USING ROTATING NAVIGATION SENSORS
    • 使用旋转导航传感器的井下动力学测量
    • US20130124095A1
    • 2013-05-16
    • US13293944
    • 2011-11-10
    • Junichi Sugiura
    • Junichi Sugiura
    • G06F19/00
    • G06F19/00E21B7/04E21B44/00E21B47/0006G01H11/00
    • A method for making downhole dynamics measurements using rotating navigational sensors includes rotating navigational accelerometers in a subterranean borehole to obtain a string of accelerometer measurements while rotating. The measurements are differentiated to obtain a string of differentiated accelerometer measurements and may then be further processed to obtain a drill string vibration parameter. Substantially simultaneous magnetometer measurements may be obtained and utilized to compute a corrected vibration parameter in which at least one of a gravitational acceleration component, a tangential acceleration component, and a centripetal acceleration component is removed from the vibration parameter.
    • 使用旋转导航传感器进行井下动力学测量的方法包括在地下钻孔中的旋转导航加速度计,以在旋转时获得一串加速度计测量值。 差分测量以获得一系列不同的加速度计测量值,然后进一步处理以获得钻柱振动参数。 可以获得基本上同时的磁力计测量并用于计算校正的振动参数,其中从振动参数中去除重力加速度分量,切向加速度分量和向心加速度分量中的至少一个。
    • 4. 发明授权
    • Gravity azimuth measurement at a non-rotating housing
    • 在非旋转外壳的重力方位测量
    • US07725263B2
    • 2010-05-25
    • US11805213
    • 2007-05-22
    • Junichi Sugiura
    • Junichi Sugiura
    • G01V7/00
    • E21B47/022
    • Aspects of this invention include methods for surveying a subterranean borehole. In one exemplary aspect, a change in borehole azimuth between first and second longitudinally spaced gravity measurement sensors may be determined directly from gravity measurements made by the sensors and a measured angular position between the sensors. The gravity measurement sensors are typically disposed to rotate freely with respect to one another about a longitudinal axis of the borehole. Gravity MWD measurements in accordance with the present invention may be advantageously made without imposing any relative rotational constraints on first and second gravity sensor sets. The present invention also advantageously provides for downhole processing of the change in azimuth between the first and second gravity sensor sets. As such, Gravity MWD measurements in accordance with this invention may be advantageously utilized in closed-loop steering control methods.
    • 本发明的方面包括测量地下钻孔的方法。 在一个示例性方面,第一和第二纵向间隔的重力测量传感器之间的钻孔方位角的变化可以直接由传感器所做的重力测量和传感器之间的测量的角位置来确定。 重力测量传感器通常设置成围绕钻孔的纵向轴线相对于彼此自由旋转。 可以有利地实现根据本发明的重力MWD测量,而不对第一和第二重力传感器组施加任何相对旋转约束。 本发明还有利地提供了在第一和第二重力传感器组之间的方位角变化的井下处理。 因此,根据本发明的重力MWD测量可以有利地用于闭环转向控制方法中。
    • 5. 发明申请
    • Closed-Loop Control of Rotary Steerable Blades
    • 旋转导向叶片的闭环控制
    • US20090166086A1
    • 2009-07-02
    • US12396794
    • 2009-03-03
    • Junichi Sugiura
    • Junichi Sugiura
    • E21B7/08E21B44/00
    • E21B7/062E21B47/08
    • A steering tool has a controller configured to provide closed-loop control of blade pressure and position. In one embodiment, the controller is configured to execute a directional control methodology in which the drilling direction is controlled via control of the blade position. The pressure in each blade is further controlled within a predetermined range of pressures. This embodiment tends to prevent excessive borehole friction while at the same time reducing undesirable rotation of the blade housing. In another embodiment, the controller is configured to correlate blade pressure measurements and blade position measurements during drilling. The correlation is utilized as part of a secondary directional control scheme in the event of a downhole failure of a blade position and/or pressure sensor. This embodiment tends to provide a stable and reliable backup directional control mechanism in the event a sensor failure and therefore may save considerable rig time.
    • 转向工具具有控制器,其被配置为提供叶片压力和位置的闭环控制。 在一个实施例中,控制器被配置为执行方向控制方法,其中通过刀片位置的控制来控制钻削方向。 每个叶片中的压力进一步控制在预定的压力范围内。 该实施例倾向于防止过度的钻孔摩擦,同时减少叶片壳体的不期望的旋转。 在另一个实施例中,控制器被配置成在钻孔期间使刀片压力测量值和刀片位置测量值相关。 在叶片位置和/或压力传感器的井下故障的情况下,相关性被用作次要方向控制方案的一部分。 该实施例倾向于在传感器故障的情况下提供稳定和可靠的备用方向控制机构,因此可以节省可观的钻机时间。
    • 6. 发明申请
    • Non-contact capacitive datalink for a downhole assembly
    • 用于井下组件的非接触电容式数据链路
    • US20090058675A1
    • 2009-03-05
    • US11897597
    • 2007-08-31
    • Junichi Sugiura
    • Junichi Sugiura
    • G01V3/10E21B43/00
    • G01V11/002E21B17/028
    • Aspects of this invention include a downhole assembly having a non-contact, capacitive coupling including first and second transceivers deployed in corresponding first and second downhole tool members. The capacitive coupling is disposed to transfer electrical signals between the first and second transceivers. In one exemplary embodiment, the capacitive coupling is configured to transfer data and power between a substantially non-rotating tool member and a rotating tool member, for example, the shaft and blade housing in a steering tool. Exemplary embodiments of this invention provide a non-contact, high-speed data communication channel between first and second members of a downhole assembly. Moreover, exemplary embodiments of the invention also provide for simultaneous non-contact transmission of electrical power between the first and second tool members.
    • 本发明的方面包括具有非接触电容耦合的井下组件,其包括部署在相应的第一和第二井下工具构件中的第一和第二收发器。 电容耦合被布置成在第一和第二收发器之间传送电信号。 在一个示例性实施例中,电容耦合被配置为在基本上不旋转的工具构件和旋转工具构件(例如,转向工具中的轴和刀片壳体)之间传送数据和动力。 本发明的示例性实施例提供了井下组件的第一和第二构件之间的非接触式高速数据通信通道。 此外,本发明的示例性实施例还提供了在第一和第二工具构件之间的同时非接触式电力传输。
    • 7. 发明申请
    • Programming method for controlling a downhole steering tool
    • 用于控制井下转向工具的编程方法
    • US20060185900A1
    • 2006-08-24
    • US11062299
    • 2005-02-18
    • Stephen JonesJunichi Sugiura
    • Stephen JonesJunichi Sugiura
    • E21B44/00E21B7/04E21B47/02
    • E21B47/12
    • A method for communicating with a downhole tool located in a subterranean borehole is disclosed. Exemplary embodiments of the method include encoding data and/or commands in a sequence of varying drill string rotation rates and drilling fluid flow rates. The varying rotation rates and flow rates are measured downhole and processed to decode the data and/or the commands. In one exemplary embodiment, commands in the form of relative changes to current steering tool offset and tool face settings are encoded and transmitted downhole. Such commands may then be executed, for example, to change the steering tool settings and thus the direction of drilling. Exemplary embodiments of this invention advantageously provide for quick and accurate communication with a downhole tool.
    • 公开了一种与位于地下钻孔中的井下工具进行通信的方法。 该方法的示例性实施例包括以变化的钻柱旋转速率和钻井液流速的顺序编码数据和/或命令。 在井下测量变化的旋转速率和流速,并进行处理以对数据和/或命令进行解码。 在一个示例性实施例中,以当前转向工具偏移和工具面设置的相对变化形式的命令被编码并在井下传送。 然后可以执行这样的命令,例如,改变转向工具的设置,从而改变钻孔的方向。 本发明的示例性实施例有利地提供了与井下工具的快速和准确的通信。
    • 9. 发明授权
    • Non-contact capacitive datalink for a downhole assembly
    • 用于井下组件的非接触电容式数据链路
    • US08102276B2
    • 2012-01-24
    • US11897597
    • 2007-08-31
    • Junichi Sugiura
    • Junichi Sugiura
    • G01V3/00
    • G01V11/002E21B17/028
    • Aspects of this invention include a downhole assembly having a non-contact, capacitive coupling including first and second transceivers deployed in corresponding first and second downhole tool members. The capacitive coupling is disposed to transfer electrical signals between the first and second transceivers. In one exemplary embodiment, the capacitive coupling is configured to transfer data and power between a substantially non-rotating tool member and a rotating tool member, for example, the shaft and blade housing in a steering tool. Exemplary embodiments of this invention provide a non-contact, high-speed data communication channel between first and second members of a downhole assembly. Moreover, exemplary embodiments of the invention also provide for simultaneous non-contact transmission of electrical power between the first and second tool members.
    • 本发明的方面包括具有非接触电容耦合的井下组件,其包括部署在相应的第一和第二井下工具构件中的第一和第二收发器。 电容耦合被布置成在第一和第二收发器之间传送电信号。 在一个示例性实施例中,电容耦合被配置为在基本上不旋转的工具构件和旋转工具构件(例如,转向工具中的轴和刀片壳体)之间传送数据和动力。 本发明的示例性实施例提供了井下组件的第一和第二构件之间的非接触式高速数据通信通道。 此外,本发明的示例性实施例还提供了在第一和第二工具构件之间的同时非接触式电力传输。