会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Vector sound-intensity probes operating in a half-space
    • 矢量声强探测器在半空间中工作
    • US07920709B1
    • 2011-04-05
    • US11607376
    • 2006-12-02
    • Robert Hickling
    • Robert Hickling
    • H04R3/00H04R29/00H04B17/00
    • G01H3/14G01N29/11G01N29/341G01N29/36G01N2291/02491G01N2291/02836G01N2291/044G01V1/003G01V1/16
    • Method and apparatus (333) for measuring the sound-intensity vector in a half space bounded by a surface such as a wall or the ground (100) using an acoustic vector probe (AVP) (40), where the AVP consists of four small omnidirectional microphones (1, 2, 3 and 4) supported on narrow straight tubes at the vertices of an imaginary regular tetrahedron. The tubes are attached perpendicularly to a ring (42) with the microphones all pointing into the half space. The sound-intensity vector measured by the AVP determines the direction of a sound source within the half space. Interference from echoes caused by reflections from the boundary of the half space and from surrounding objects on the boundary can be reduced by attaching a concave solid structure (55) to the base of the AVP at the supporting ring (42). The inside of the concave structure is lined with absorbing material (65) to reduce interference by reflections from the structure.
    • 方法和装置(333),用于使用声矢量探测器(AVP)(40)测量由诸如墙壁或地面(100)的表面限定的半空间中的声音强度矢量,其中AVP由四个小的 支撑在虚拟正四面体顶点的窄直管上的全向麦克风(1,2,3和4)。 管子垂直于环(42)安装,麦克风都指向半空间。 由AVP测量的声强矢量决定了半空间内的声源的方向。 通过在支撑环(42)处将凹形固体结构(55)附接到AVP的基部,可以减少由来自半空间的边界和边界周围物体的边界的反射引起的回波的干扰。 凹形结构的内部衬有吸收材料(65),以减少来自结构的反射的干扰。
    • 3. 发明授权
    • Detection of bured objects using an array of non-contact ultrasonic vibrometers
    • 使用非接触式超声波振动仪阵列检测被检物体
    • US07751281B1
    • 2010-07-06
    • US12589652
    • 2009-10-27
    • Robert Hickling
    • Robert Hickling
    • G01S3/80
    • G01S15/876B06B1/0607
    • Acoustic apparatus and method for detecting and identifying near-surface buried objects using a non-contact array of ultrasonic vibrometers (200) each vibrometer having a focused beam in air (400) pointing vertically at the ground. Also there is a low-frequency loudspeaker (60). Both are connected to a digital signal processor (40). The loudspeaker emits continuous sound that penetrates the ground and generates echoes from a buried object, creating seismic vibrations (350) at the surface (150). The vibrometers emit pulses of focused ultrasound with a known depth of field (650) and receive echo pulses (770) from the seismic vibrations. The pulses occur at a much faster rate than the frequency of the seismic vibrations, typically a few thousand times faster, thus permitting the processor to compute the motion and frequency content of the seismic vibrations. This data from the array determines the shape and frequency response of near-surface buried objects which are shown on a display device. The apparatus is practical and inexpensive. A movable means of scanning with the apparatus can cover the ground one section of area at a time.
    • 用于使用超声波振动计(200)的非接触阵列检测和识别近地表埋藏物体的声学设备和方法,每个振动计具有在空气中垂直指向地面的空气中的聚焦光束(400)。 还有一个低频扬声器(60)。 两者都连接到数字信号处理器(40)。 扬声器发出连续的声音,其穿透地面并产生来自掩埋物体的回波,从而在表面(150)产生地震振动(350)。 振动计发射具有已知景深(650)的聚焦超声的脉冲,并从地震振动接收回波脉冲(770)。 脉冲以比地震振动的频率快得多的速度,通常几千倍,从而允许处理器计算地震振动的运动和频率含量。 来自阵列的这些数据决定了显示装置上所示的近地表掩埋物体的形状和频率响应。 该设备实用且便宜。 用该装置扫描的可移动装置可以一次覆盖地面的一个区域。
    • 4. 发明申请
    • Time blocks and customizable time blocks
    • 时间块和可定制的时间块
    • US20080168113A1
    • 2008-07-10
    • US11650283
    • 2007-01-05
    • Robert HicklingChinhao David Lee
    • Robert HicklingChinhao David Lee
    • G06F17/30
    • G06Q10/109
    • Techniques are described herein for providing a plurality of graphical elements, independent of any calendar location, associated with a distinct set of predefined data describing at least one characteristic of a calendar event comprising a plurality of characteristics. The predefined data may be user-specified. The graphical element is activated, such as by clicking or dragging, and in response to the activation, a proposed calendar event is generated that has a first set of one or more calendar event characteristics based on the predefined data associated with the graphical element. User input is received defining a second set of one or more calendar event characteristics that are not associated with the graphical element, and the proposed calendar event is saved in association with a particular calendar location.
    • 本文描述了技术,用于提供与描述包括多个特征的日历事件的至少一个特征的预定义数据的不同集合相关联的多个独立于任何日历位置的图形元素。 预定义的数据可以是用户指定的。 激活图形元素,例如通过点击或拖动,并且响应于激活,基于与图形元素相关联的预定义数据,生成具有第一组一个或多个日历事件特征的建议的日历事件。 接收用户输入,定义与图形元素不相关联的一个或多个日历事件特征的第二组,并且与特定日历位置相关联地保存所提出的日历事件。
    • 5. 发明授权
    • Acoustic measurement method and apparatus
    • 声学测量方法和装置
    • US07058184B1
    • 2006-06-06
    • US10396541
    • 2003-03-25
    • Robert Hickling
    • Robert Hickling
    • H04R3/00
    • G01H3/00G01H3/125G01N29/11G01N29/341G01N29/36G01N2291/02491G01N2291/02836G01N2291/044G01V1/003G01V1/16
    • Method and apparatus for simultaneous acoustic measurement at a point (M) in space of the three components of the sound intensity vector. A preferred omnidirectional vector probe (40) includes a central ring (42) with four small, microphones on tubes attached to the ring spaced from one another in a regular tetrahedral arrangement. The tubes are parallel to the axis of the ring, two on one side (58) and two on the reverse side (60) of the ring, with two of the microphones pointing in one direction and two in the opposite direction. The microphone signals are processed by an analog-to-digital converter feeding a digital signal processor (68) and employing a cross-spectral formulation to compute a sound intensity vector at the measurement point (M). Sound velocity and pressure can also be determined at this point. The resulting data may be outputted on a computer screen or other device (70). Additional related features and methods are disclosed.
    • 用于在声强矢量的三个分量的空间中的点(M)处同时进行声学测量的方法和装置。 优选的全向向量探针(40)包括中心环(42),其具有四个小的麦克风,所述小型麦克风连接到环上,以规则的四面体布置彼此间隔开。 这些管子平行于环的轴线,两个在一个侧面(58)上,两个在环的背面(60)上,两个麦克风指向一个方向,两个指向相反的方向。 麦克风信号由馈送数字信号处理器(68)的模数转换器处理,并采用交叉谱公式来计算测量点(M)处的声音强度矢量。 此时也可以确定声速和压力。 所得到的数据可以在计算机屏幕或其他设备(70)上输出。 公开了附加的相关特征和方法。
    • 7. 发明授权
    • Forward-looking sonar for ships and boats
    • 用于船舶和船只的前瞻性声纳
    • US08203909B1
    • 2012-06-19
    • US12800169
    • 2010-05-10
    • Robert Hickling
    • Robert Hickling
    • G01S15/88
    • G01N29/11G01N29/341G01N29/36G01N2291/02491G01N2291/02836G01N2291/044G01S7/521G01S15/89G01S15/93
    • Method and apparatus for detecting and locating underwater obstacles in the path of a ship or boat. The apparatus includes a pulsed wide-angle sonar projector (100) controlled by a digital signal processor (400) that emits sound pulses at frequencies of 30 kHz and less that can penetrate sediment-laden water hundreds of meters or more ahead of the ship or boat. The projector generates echoes from submerged objects. A vector sound-intensity probe (200) receives the echoes and transmits them to the digital signal processor. The digital signal processor determines the location of submerged obstacles ahead of the ship or boat from the echoes received by the probe. This information is displayed on an output device (500). The sonar projector and vector sound-intensity probe are contained separately in streamlined housings aimed in the forward direction under the bow of the ship or boat. The processor, output device and other electronics are located on board the ship or boat.
    • 用于检测和定位船舶或船只路径中的水下障碍物的方法和装置。 该装置包括由数字信号处理器(400)控制的脉冲广角声纳投影仪(100),该数字信号处理器(400)发射频率为30kHz和更小的声音脉冲,其能够穿过船前方数百米或更多的沉积物, 船。 投影机会从浸没的物体产生回波。 矢量声强探测器(200)接收回波并将其发送到数字信号处理器。 数字信号处理器从探头接收的回波确定船舶或船之前的潜水障碍物的位置。 该信息显示在输出设备(500)上。 声纳投影仪和矢量声强探测器分别包含在流线型外壳中,朝向船舶或船的船首的向前方向。 处理器,输出设备和其他电子设备位于船上或船上。
    • 8. 发明授权
    • Normalization and calibration of microphones in sound-intensity probes
    • 声强度探头中麦克风的归一化和校准
    • US07526094B2
    • 2009-04-28
    • US11415910
    • 2006-05-02
    • Robert Hickling
    • Robert Hickling
    • H04R1/02H04R29/00H04R3/00H04R1/20
    • H04R29/004H04R3/04H04R19/016
    • A system for normalizing and calibrating the microphones of a sound-intensity probe or a composite of such probes, with respect to a stable comparison microphone with known acoustical characteristics. Normalizing and calibrating are performed using an apparatus 57 consisting of a tube with a loudspeaker inserted in one end and a fixture for holding the microphones of the probe together with the comparison microphone in the other end. The comparison microphone has known acoustical characteristics supplied by the manufacturer. Two banks of quarter-wave resonators 83 and 84 are attached to the side of the tube to absorb standing waves. The sound-intensity probe can be either a two-microphone probe used for measuring a single component of the sound-intensity vector or a probe with four microphones in the regular tetrahedral arrangement used for measuring the full sound-intensity vector. The microphones in the probe are made to have a substantially identical response with the comparison microphone by determining the transfer functions between the microphones and the comparison microphone. The transfer functions and known acoustical characteristics of the comparison microphone are then used to correct the pressure measurements by the microphones, when they are used to measure sound intensity. This ensures that the sound-intensity measurements are accurate and that there is essentially no bias in determining the direction to a sound source from the direction of the sound-intensity vector.
    • 相对于具有已知声学特性的稳定的比较麦克风,用于对声强探测器的麦克风或这种探针的复合物进行归一化和校准的系统。 使用由具有插入一端的扬声器的管构成的装置57和在另一端与比较麦克风一起保持探头的麦克风的固定装置来执行归一化和校准。 比较麦克风具有制造商提供的已知声学特性。 两组四分之一波长的谐振器83和84连接到管的侧面以吸收驻波。 声强度探头可以是用于测量声强矢量的单个分量的双麦克风探头,也可以是用于测量全部声强矢量的四面体布置的四个麦克风的探头。 通过确定麦克风和比较麦克风之间的传递函数,将探头中的麦克风与比较麦克风具有基本相同的响应。 然后使用比较麦克风的传递函数和已知的声学特性来校正麦克风的压力测量值,当它们用于测量声音强度时。 这确保了声强度测量是准确的,并且从声强向量的方向确定声源的方向基本上没有偏差。
    • 9. 发明授权
    • Sound source location and quantification using arrays of vector probes
    • 使用矢量探测阵列的声源位置和量化
    • US07054228B1
    • 2006-05-30
    • US10746763
    • 2003-12-26
    • Robert Hickling
    • Robert Hickling
    • G01S3/80G01N29/00
    • G01S3/8006G01S5/20
    • Method and apparatus for locating and quantifying sound sources using an array of acoustic vector probes (200). Signals received at the probes are converted to digital form and fed into a digital signal processor (400) which computes the sound pressure and the sound-intensity vector at each probe. The set of sound-intensity vectors measured by the array provides a set of directions to a sound source (100) whose approximate spatial coordinates are determined using a least-squares triangulation formula. The sound-intensity vectors also determine sound-power flow from the source. In addition sound pressure measured by the probes can be phased to form a sensitivity beam (250) for scanning a source. Sound-intensity measurements made concurrently can be used to determine the spatial coordinates of the part being scanned and the sound power radiated by that part. Results are displayed on a computer screen or other device (500) permitting an operator to interact with and control the apparatus. Additional related features and methods are disclosed.
    • 使用声矢量探针阵列(200)定位和量化声源的方法和装置。 在探头处接收到的信号被转换成数字形式并被馈送到数字信号处理器(400),该数字信号处理器计算每个探测器处的声压和声音强度矢量。 通过阵列测量的一组声强矢量提供了一组方向,声源(100)的近似空间坐标使用最小二乘法三角测量公式确定。 声强矢量也决定了声源的声源流。 此外,由探针测量的声压可以被定相以形成用于扫描光源的灵敏度光束(250)。 同时进行的声强测量可用于确定正被扫描的部件的空间坐标和该部分辐射的声功率。 结果显示在计算机屏幕或其他设备(500)上,允许操作者与设备进行交互和控制。 公开了附加的相关特征和方法。
    • 10. 发明申请
    • Normalization and calibration of microphones in sound-intensity probes
    • 声强度探头中麦克风的归一化和校准
    • US20070223730A1
    • 2007-09-27
    • US11415910
    • 2006-05-02
    • Robert Hickling
    • Robert Hickling
    • H04R3/00H04R1/02
    • H04R29/004H04R3/04H04R19/016
    • A system for normalizing and calibrating the microphones of a sound-intensity probe or a composite of such probes, with respect to a stable comparison microphone with known acoustical characteristics. Normalizing and calibrating are performed using an apparatus 57 consisting of a tube with a loudspeaker inserted in one end and a fixture for holding the microphones of the probe together with the comparison microphone in the other end. The comparison microphone has known acoustical characteristics supplied by the manufacturer. Two banks of quarter-wave resonators 83 and 84 are attached to the side of the tube to absorb standing waves. The sound-intensity probe can be either a two-microphone probe used for measuring a single component of the sound-intensity vector or a probe with four microphones in the regular tetrahedral arrangement used for measuring the full sound-intensity vector. The microphones in the probe are made to have a substantially identical response with the comparison microphone by determining the transfer functions between the microphones and the comparison microphone. The transfer functions and known acoustical characteristics of the comparison microphone are then used to correct the pressure measurements by the microphones, when they are used to measure sound intensity. This ensures that the sound-intensity measurements are accurate and that there is essentially no bias in determining the direction to a sound source from the direction of the sound-intensity vector.
    • 相对于具有已知声学特性的稳定的比较麦克风,用于对声强探测器的麦克风或这种探针的复合物进行归一化和校准的系统。 使用由具有插入一端的扬声器的管构成的装置57和在另一端与比较麦克风一起保持探头的麦克风的固定装置来执行归一化和校准。 比较麦克风具有制造商提供的已知声学特性。 两组四分之一波长的谐振器83和84连接到管的侧面以吸收驻波。 声强度探头可以是用于测量声强矢量的单个分量的双麦克风探头,也可以是用于测量全部声强矢量的四面体布置的四个麦克风的探头。 通过确定麦克风和比较麦克风之间的传递函数,将探头中的麦克风与比较麦克风具有基本相同的响应。 然后使用比较麦克风的传递函数和已知的声学特性来校正麦克风的压力测量值,当它们用于测量声音强度时。 这确保了声强度测量是准确的,并且从声强向量的方向确定声源的方向基本上没有偏差。