会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD AND APPARATUS OF MULTI-COIL MR IMAGING WITH HYBRID SPACE CALIBRATION
    • 多层次磁共振成像与混合空间校准的方法与装置
    • US20090134872A1
    • 2009-05-28
    • US12363346
    • 2009-01-30
    • Anja C.S. BrauPhilip James BeattyStefan SkareRoland Bammer
    • Anja C.S. BrauPhilip James BeattyStefan SkareRoland Bammer
    • G01R33/48
    • G01R33/5611
    • The present invention provides a system and method for parallel imaging that performs auto-calibrating reconstructions with a 2D (for 2D imaging) or 3D kernel (for 3D imaging) that exploits the computational efficiencies available when operating in certain data “domains” or “spaces”. The reconstruction process of multi-coil data is separated into a “training phase” and an “application phase” in which reconstruction weights are applied to acquired data to synthesize (replace) missing data. The choice of data space, i.e., k-space, hybrid space, or image space, in which each step occurs is independently optimized to reduce total reconstruction time for a given imaging application. As such, the invention retains the image quality benefits of using a 2D k-space kernel without the computational burden of applying a 2D k-space convolution kernel.
    • 本发明提供了一种用于并行成像的系统和方法,其使用2D(用于2D成像)或3D内核(用于3D成像)执行自动校准重建,其利用在某些数据“域”或“空间”中操作时可用的计算效率 “。 多线圈数据的重构过程分为“训练阶段”和“应用阶段”,其中重建权重应用于获取的数据以合成(替换)丢失的数据。 每个步骤发生的数据空间的选择,即k空间,混合空间或图像空间被独立地优化以减少给定成像应用的总重构时间。 因此,本发明保留了使用2D k空间内核的图像质量优点,而没有应用2D k空间卷积内核的计算负担。
    • 2. 发明授权
    • MRI data acquisition using propeller k-space data acquisition
    • 使用螺旋桨k空间数据采集的MRI数据采集
    • US07535222B2
    • 2009-05-19
    • US11619008
    • 2007-01-02
    • Roland BammerStefan T. Skare
    • Roland BammerStefan T. Skare
    • G01V3/00
    • G01R33/5615G01R33/4824G01R33/5616G01R33/565G01R33/56509G01R33/5676
    • Disclosed is a new propeller EPI pulse sequence with reduced sensitivity to field inhomogeneities is proposed. Image artifacts such as blurring due to Nyquist ghosting and susceptibility gradients are investigated and compared with those obtained in previous propeller EPI studies. The proposed propeller EPI sequence uses a readout that is played out along the short axis of the propeller blade, orthogonal to the readout used in previous propeller methods. In contrast to long-axis readout propeller EPI, this causes the echo spacing between two consecutive phase-encoding (PE) lines to decrease, which in turn increases the k-space velocity in this direction and hence the pseudo-bandwidth.
    • 提出了一种新的螺旋桨EPI脉冲序列,其对场不均匀性的灵敏度降低。 研究了由于奈奎斯特重影和敏感梯度引起的模糊图像伪像,并与之前推进的EPI研究中获得的图像进行了比较。 所提出的螺旋桨EPI序列使用沿着螺旋桨叶片的短轴播放的读数,与先前的螺旋桨方法中使用的读数正交。 与长轴读出螺旋桨EPI相反,这导致两个连续的相位编码(PE)线之间的回波间隔减小,这又增加了该方向上的k空间速度,从而增加了伪带宽。
    • 3. 发明申请
    • Method for optical pose detection
    • 光学姿态检测方法
    • US20120121124A1
    • 2012-05-17
    • US13134703
    • 2011-06-15
    • Roland BammerChristoph FormanMurat Aksoy
    • Roland BammerChristoph FormanMurat Aksoy
    • G06K9/00
    • G06K9/3216G06T7/248G06T7/74G06T2207/10081G06T2207/10088G06T2207/10104G06T2207/10108G06T2207/30016
    • The tracking and compensation of patient motion during a magnetic resonance imaging (MRI) acquisition is an unsolved problem. A self-encoded marker where each feature on the pattern is augmented with a 2-D barcode is provided. Hence, the marker can be tracked even if it is not completely visible in the camera image. Furthermore, it offers considerable advantages over a simple checkerboard marker in terms of processing speed, since it makes the correspondence search of feature points and marker-model coordinates, which are required for the pose estimation, redundant. Significantly improved accuracy relative to a planar checkerboard pattern is obtained for both phantom experiments and in-vivo experiments with substantial patient motion. In an alternative aspect, a marker having non-coplanar features can be employed to provide improved motion tracking. Such a marker provides depth cues that can be exploited to improve motion tracking. The aspects of non-coplanar patterns and self-encoded patterns can be practiced independently or in combination.
    • 磁共振成像(MRI)采集期间患者运动的跟踪和补偿是未解决的问题。 提供了一种自编码标记,其中图案上的每个特征都用2-D条形码增加。 因此,即使在相机图像中不完全可见,也可以跟踪标记。 此外,它在处理速度方面比简单的棋盘标记提供了显着的优点,因为它使得姿势估计所需的特征点和标记 - 模型坐标的对应搜索是冗余的。 对于虚拟实验和具有实质性患者运动的体内实验,获得相对于平面棋盘图案的显着提高的精度。 在另一方面,可以使用具有非共面特征的标记来提供改进的运动跟踪。 这样的标记提供可以利用来提高运动跟踪的深度提示。 非共面图案和自编码图案的方面可以独立地或组合地实现。
    • 4. 发明授权
    • Motion corrected tensor magnetic resonance imaging
    • 运动校正张量磁共振成像
    • US07902825B2
    • 2011-03-08
    • US12454530
    • 2009-05-18
    • Roland BammerMurat Aksoy
    • Roland BammerMurat Aksoy
    • G01V3/00
    • G01R33/56341G01R33/56509
    • In tensor MRI, a set of k-space MRI data points is acquired that includes one or more k-space subsets of MRI data points. An object orientation (or spatial transformation) corresponding to each of the k-space subsets is determined. Because the object orientation (or spatial transformation) can differ from subset to subset, the overall set of k-space data can be inconsistent with respect to object orientation (or spatial transformation). This possible inconsistency can be addressed by providing a k-space tensor model that includes object orientation and/or spatial transformation information corresponding to each of the subsets. A tensor MRI image can be reconstructed from the set of k-space MRI data points by using the k-space tensor model to account for object orientation and/or spatial transformation.
    • 在张量MRI中,获取包括MRI数据点的一个或多个k空间子集的一组k空间MRI数据点。 确定对应于每个k-空间子集的对象取向(或空间变换)。 由于对象方向(或空间变换)可以从子集到子集不同,所以k空间数据的整体集可以与对象取向(或空间变换)不一致。 可以通过提供包括与每个子集相对应的对象取向和/或空间变换信息的k空间张量模型来解决这种可能的不一致性。 可以通过使用k空间张量模型来考虑物体取向和/或空间变换,从该组k空间MRI数据点重建张量MRI图像。
    • 7. 发明申请
    • Motion corrected tensor magnetic resonance imaging
    • 运动校正张量磁共振成像
    • US20090284257A1
    • 2009-11-19
    • US12454530
    • 2009-05-18
    • Roland BammerMurat Aksoy
    • Roland BammerMurat Aksoy
    • G01R33/20
    • G01R33/56341G01R33/56509
    • In tensor MRI, a set of k-space MRI data points is acquired that includes one or more k-space subsets of MRI data points. An object orientation (or spatial transformation) corresponding to each of the k-space subsets is determined. Because the object orientation (or spatial transformation) can differ from subset to subset, the overall set of k-space data can be inconsistent with respect to object orientation (or spatial transformation). This possible inconsistency can be addressed by providing a k-space tensor model that includes object orientation and/or spatial transformation information corresponding to each of the subsets. A tensor MRI image can be reconstructed from the set of k-space MRI data points by using the k-space tensor model to account for object orientation and/or spatial transformation.
    • 在张量MRI中,获取包括MRI数据点的一个或多个k空间子集的一组k空间MRI数据点。 确定对应于每个k-空间子集的对象取向(或空间变换)。 由于对象方向(或空间变换)可以从子集到子集不同,所以k空间数据的整体集可以与对象取向(或空间变换)不一致。 可以通过提供包括与每个子集相对应的对象取向和/或空间变换信息的k空间张量模型来解决这种可能的不一致性。 可以通过使用k空间张量模型来考虑物体取向和/或空间变换,从该组k空间MRI数据点重建张量MRI图像。
    • 9. 发明授权
    • Correction of the effect of spatial gradient field distortions in diffusion-weighted imaging
    • 校正扩散加权成像中空间梯度场失真的影响
    • US06969991B2
    • 2005-11-29
    • US10317516
    • 2002-12-11
    • Roland BammerMichael MarklBurak AcarNorbert J. PelcMichael E. Moseley
    • Roland BammerMichael MarklBurak AcarNorbert J. PelcMichael E. Moseley
    • G01R33/563G01R33/565G01V3/00
    • G01R33/56341G01R33/56518
    • A general mathematical framework is formulated to characterize the contribution of gradient non-uniformities to diffusion tensor imaging in MRI. Based on a model expansion, the actual gradient field is approximated and employed, after elimination of geometric distortions, for predicting and correcting the errors in diffusion encoding. Prior to corrections, experiments clearly reveal marked deviations of the calculated diffusivity for fields of view generally used in diffusion experiments. These deviations are most significant with greater distance from the magnet's isocenter. For a FOV of 25 cm the resultant errors in absolute diffusivity can range from approximately −10 to +20 percent. Within the same field of view, the diffusion-encoding direction and the orientation of the calculated eigenvectors can be significantly altered if the perturbations by the gradient non-uniformities are not considered. With the proposed correction scheme most of the errors introduced by gradient non-uniformities can be removed.
    • 制定了一般的数学框架来表征梯度不均匀性对MRI中扩散张量成像的贡献。 基于模型扩展,在消除几何失真之后,实际梯度场被近似和采用,用于预测和纠正扩散编码中的误差。 在更正之前,实验清楚地揭示了通常用于扩散实验的视野的计算的扩散系数的显着偏差。 这些偏差是最重要的,距离磁体的等角点更远。 对于25cm的FOV,绝对扩散率的所得误差可以在约-10至+ 20%的范围内。 在相同视野内,如果不考虑梯度不均匀性的扰动,则可以显着地改变计算的特征向量的扩散编码方向和取向。 利用提出的校正方案,可以消除由梯度不均匀性引入的大多数误差。
    • 10. 发明授权
    • Method for optical pose detection
    • 光学姿态检测方法
    • US08848977B2
    • 2014-09-30
    • US13134703
    • 2011-06-15
    • Roland BammerChristoph FormanMurat Aksoy
    • Roland BammerChristoph FormanMurat Aksoy
    • G06K9/00G06T7/20G06T7/00G06K9/32
    • G06K9/3216G06T7/248G06T7/74G06T2207/10081G06T2207/10088G06T2207/10104G06T2207/10108G06T2207/30016
    • The tracking and compensation of patient motion during a magnetic resonance imaging (MRI) acquisition is an unsolved problem. A self-encoded marker where each feature on the pattern is augmented with a 2-D barcode is provided. Hence, the marker can be tracked even if it is not completely visible in the camera image. Furthermore, it offers considerable advantages over a simple checkerboard marker in terms of processing speed, since it makes the correspondence search of feature points and marker-model coordinates, which are required for the pose estimation, redundant. Significantly improved accuracy is obtained for both phantom experiments and in-vivo experiments with substantial patient motion. In an alternative aspect, a marker having non-coplanar features can be employed to provide improved motion tracking. Such a marker provides depth cues that can be exploited to improve motion tracking. The aspects of non-coplanar patterns and self-encoded patterns can be practiced independently or in combination.
    • 磁共振成像(MRI)采集期间患者运动的跟踪和补偿是未解决的问题。 提供了一种自编码标记,其中图案上的每个特征都用2-D条形码增加。 因此,即使在相机图像中不完全可见,也可以跟踪标记。 此外,它在处理速度方面比简单的棋盘标记提供了显着的优点,因为它使得姿势估计所需的特征点和标记 - 模型坐标的对应搜索是冗余的。 对于具有实质性的患者运动的虚拟实验和体内实验,获得显着提高的精度。 在另一方面,可以使用具有非共面特征的标记来提供改进的运动跟踪。 这样的标记提供可以利用来提高运动跟踪的深度提示。 非共面图案和自编码图案的方面可以独立地或组合地实现。