会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Algorithmic reduction of vehicular magnetic self-noise
    • 车辆磁性自噪声算法减少
    • US08392142B1
    • 2013-03-05
    • US12386180
    • 2009-04-01
    • Christopher I. ConnerJohn J. HolmesDonald E. Pugsley
    • Christopher I. ConnerJohn J. HolmesDonald E. Pugsley
    • G01D18/00G01R33/02
    • G01R33/022G01D3/036
    • Removal of extraneous magnetic measurement components from magnetic anomaly detection (MAD) tends to increase its accuracy. Conventional removal accounts for anomalous magnetism manifested by the MAD vehicle (typically, unmanned), but assumes that the magnetic field applied to the MAD vehicle is the earth's magnetic field, i.e., is non-anomalous and known. In contrast, the present invention accounts not only for anomalous magnetism manifested by the MAD vehicle, but also for anomalous magnetism manifested in the MAD vehicle's vicinity, such as by a manned control vehicle. The present invention's mathematical characterization of vehicular “self-noise” due to induced and permanent magnetization is more refined, especially insofar as treating the vehicle's ambient magnetic field as an unknown (empirical) quantity, rather than a known (non-empirical) quantity. A typical inventive system for vehicular magnetic self-noise-reduced magnetic anomaly detection includes magnetic and other sensors, and a computer implementing the inventive mathematical characterization in processing the signals.
    • 从磁异常检测(MAD)中去除外来磁测量元件往往会提高其精度。 传统的去除表明由MAD车辆(通常是无人驾驶)表现出的异常磁力,但是假设施加到MAD车辆的磁场是地球的磁场,即是非异常的和已知的。 相反,本发明不仅涉及由MAD车辆表现出的异常磁力,而且还考虑到诸如载人控制车辆在MAD车辆附近表现的异常磁力。 本发明的由于诱导和永久磁化引起的车辆自身噪声的数学表征更加细化,特别是在将车辆的环境磁场作为未知(经验)数量而不是已知(非经验)数量的情况下。 用于车辆磁性自减噪磁异常检测的典型的本发明系统包括磁性和其它传感器,以及在处理信号时实现本发明的数学表征的计算机。
    • 2. 发明授权
    • Roll frequency dependency correction to control magnetic ship signatures
    • 滚动频率依赖校正来控制磁性船舶签名
    • US08584586B1
    • 2013-11-19
    • US13100059
    • 2011-05-03
    • Donald E. PugsleyJohn J. HolmesRobert W. Schuler
    • Donald E. PugsleyJohn J. HolmesRobert W. Schuler
    • B63G9/06
    • B63G9/06H01F13/00
    • The present invention provides three different algorithms, namely, the “divide and conquer” algorithm, the “Hiddensee compensation” algorithm, and the “impulse response” algorithm. Any one of these three inventive algorithms may be made a part of an overall degaussing algorithm for a marine vessel. Each corrective algorithm, by itself, compensates for deviation of the vessel's induced signature from direct, linear proportionality to the ambient magnetic field. This deviation is associated with the dependency of a marine vessel's magnetic signature on the frequency at which the vessel rolls in the water. Practice of inventive compensation tends to be increasingly called for with increasing magnetic character of the vessel.
    • 本发明提供了三种不同的算法,即“划分和征服”算法,“Hiddensee补偿”算法和“脉冲响应”算法。 这三种创造性算法中的任何一种可以被制成用于海洋船舶的整体消磁算法的一部分。 每个校正算法本身都补偿了船只的诱发签名与环境磁场的直接,线性比例的偏差。 这种偏差与海洋船舶的磁性签名对船舶在水中滚动的频率有关。 随着船舶磁性的增加,创造性补偿的实践往往越来越多。
    • 3. 发明授权
    • Integrating fluxgate magnetometer
    • 集成磁通门磁强计
    • US06278272B1
    • 2001-08-21
    • US09517558
    • 2000-03-02
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • G01R3304
    • G01R33/045
    • A magnetic field sensor based on fluxgate magnetometric principles includes a magnetic core having an elongated oblong configuration and accordingly defining a closed magnetic flux path. The core includes a rigid bobbin which defines the core's shape, and about which amorphous magnetic material is wrapped. A drive winding is wound about each of the two parallel linear sections of the core. A sense winding is wound about another rigid bobbin which surrounds the drive winding-wound core. Typically, a feedback winding is wound about another rigid bobbin which surrounds the sense winding. When, for sensing purposes, the driven sensor is situated near and parallel to a ferromagnetic material surface, the sensor is capable of generating a detectable signal which is representative of the “integration” of magnetic field components over the length of the core. The invention's integrative function minimizes measurement skewing or distortion attributable to anomalous characteristics of the ferromagnetic material being sensed.
    • 基于磁通门磁力计原理的磁场传感器包括具有细长椭圆形构造并因此限定闭合磁通路径的磁芯。 芯包括限定芯的形状的刚性线轴,以及围绕其形成非晶磁性材料。 驱动绕组缠绕在芯的两个平行线段中的每一个上。 感测绕组缠绕在围绕驱动绕组磁芯的另一个刚性线轴上。 通常,反馈绕组缠绕在围绕感测绕组的另一个刚性线轴上。 为了感测目的,当驱动传感器位于铁磁材料表面附近并平行时,传感器能够产生可检测的信号,该信号代表磁芯长度上的磁场分量的“积分”。 本发明的综合功能最小化了由感测的铁磁材料的异常特性引起的测量偏移或失真。
    • 5. 发明授权
    • Spatially integrating fluxgate manetometer having a flexible magnetic core
    • 具有柔性磁芯的空间积分磁通门强度计
    • US06417665B1
    • 2002-07-09
    • US09517560
    • 2000-03-02
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • John F. ScarzelloJohn J. HolmesEdward C. O'Keefe
    • G01R3304
    • G01R33/045
    • A magnetic field sensor based on fluxgate magnetometric principles includes a magnetic core having a highly elongated oblong configuration and accordingly defining a closed magnetic flux path. The core includes flexible amorphous magnetic material. A drive winding is wound about each of two linear sections of the core. The two drive winding-wound linear core sections are closely coupled in parallel adjacent disposition. A sense winding is wound about the drive winding-wound core, thereby forming a narrow unitary strip-like sensor construction which, depending on the embodiment, can be practically any length. Typically, a very long sensor is situated huggingly or abuttingly with respect to a great expanse of a ferromagnetic material surface. The sensor is capable of generating a detectable signal which is representative of the “integration” of magnetic field components over the length of the core. The invention's integrative function minimizes measurement skewing or distortion attributable to anomalous characteristics of the ferromagnetic material being sensed. The invention's “integrative” sensor admits of systematic association with any number and diverse kinds of “point” sensors, in furtherance of more complete data acquisition.
    • 基于磁通门磁力计原理的磁场传感器包括具有高度细长椭圆形构造并因此限定闭合磁通路径的磁芯。 芯包括柔性非晶磁性材料。 驱动绕组围绕芯的两个线性部分中的每一个缠绕。 两个驱动绕组的线性芯部分相邻配置紧密耦合。 感应绕组缠绕在驱动绕线芯上,从而形成窄的单一条状传感器结构,根据实施例,传感器结构实际上可以是任何长度。 通常,非常长的传感器相对于铁磁材料表面的大片而拥挤地或邻接地位置。 该传感器能够产生可检测的信号,其表示在磁芯长度上的磁场分量的“积分”。 本发明的综合功能最小化了由感测的铁磁材料的异常特性引起的测量偏移或失真。 本发明的“综合”传感器承认与任何数量多样的“点”传感器的系统关联,以促进更完整的数据采集。
    • 6. 发明授权
    • Standing wave magnetometer
    • 驻波磁力计
    • US06344743B1
    • 2002-02-05
    • US09262932
    • 1999-03-05
    • John J. HolmesJohn F. Scarzello
    • John J. HolmesJohn F. Scarzello
    • G01R3302
    • G01R33/045
    • The invention uniquely avails of Fourier analytical principles for determining the distribution of a magnetic field in a one-dimensional (linear), two-dimensional (planar) or three-dimensional (spatial) region of interest. According to many embodiments, integrating sensor apparatus having an associated length is inventively implemented so as to measure the magnetic field amplitude value for each of two or more different points. Alternating current is applied at at least one high frequency whereby, for each such frequency, the associated wavelength corresponds to some multiple of the sensor's length. Coiled around the sensor is/are one or more solenoids which is/are configured so as to establish a standing wave along the sensor's length. Inventive adaptation of the sensor's integrating function basically entails regarding a Fourier-type harmonic bias function as being consequential of the standing wave. A Fourier coefficient is thus inventively found for each selected multiple of the sensor's length. The invention is especially advantageous because a single inventive sensor is capable of measuring a magnetic field distribution of virtually unlimited expanse, the extensiveness of which would conventionally require a multiplicity of arrayed sensors.
    • 本发明独特地用于确定感兴趣的一维(线性),二维(平面)或三维(空间)区域中的磁场分布的傅立叶分析原理。 根据许多实施例,本发明实现具有相关联长度的积分传感器装置,以便测量两个或多个不同点中的每一个的磁场振幅值。 交替电流以至少一个高频率施加,由此,对于每个这样的频率,相关波长对应于传感器长度的一些倍数。 传感器周围卷绕有一个或多个螺线管,其被构造成沿着传感器的长度建立驻波。 传感器集成功能的发明性适应性主要涉及傅里叶型谐波偏置功能,因此是驻波的结果。 因此,针对传感器长度的每个所选择的倍数,发现傅立叶系数。 本发明是特别有利的,因为单个本发明的传感器能​​够测量几乎无限宽的磁场分布,其广泛性通常需要多个阵列传感器。
    • 8. 发明授权
    • Gradiometric measurement methodology for determining magnetic fields of large objects
    • 用于确定大型物体磁场的Gradiometric测量方法
    • US06714008B1
    • 2004-03-30
    • US10206761
    • 2002-07-29
    • John J. HolmesJohn F. ScarzelloBruce R. Hood
    • John J. HolmesJohn F. ScarzelloBruce R. Hood
    • G01R3300
    • G01R33/022
    • Gradiometers are encompassingly disposed, relative to an object of interest, in a configuration generally describing a closed prolate spheroidal shape, and the measurements taken by the gradiometers are mathematically processed. The gradiometric measurements are defined as directional derivatives which exist in equations involving directional derivatives and prolate spheroidal multipole moments of said entity. The prolate spheroidal multipole moments are thereby calculated, and these prolate spheroidal multipole moment values are extrapolated to ascertain the magnetic fields (equivalently expressed, the magnetic signatures) associated with the object and inwardly delimited by the prolate spheroid. The practitioner can optimize such distribution numerically, orientationally and/or positionally by using the equations involving directional derivatives and prolate spheroidal multipole moments. Extraneous magnetic field effects (e.g., applied fields, earth fields) are inherently excluded, thus obviating the object's removal from an electromagnetic test facility.
    • 辐射计相对于感兴趣的物体被概括地设置在通常描述闭合的长椭球形状的构型中,并且数学地处理由梯度计进行的测量。 梯度测量被定义为方程导数,其存在于涉及方向导数和所述实体的长圆球形多极矩的方程中。 由此计算出长椭球形多极矩,并推断出这些长椭球多极矩值,以确定与物体相关的磁场(等价表示为磁特征),并由长椭球体内向界定。 从业者可以通过使用涉及方向导数和长圆球形多极矩的方程来数字,方向和/或位置优化这种分布。 固有地排除了外部磁场效应(例如,施加的场,地球场),从而避免了物体从电磁测试设备的移除。
    • 9. 发明授权
    • Zero field degaussing system and method
    • 零场消磁系统及方法
    • US5463523A
    • 1995-10-31
    • US115075
    • 1993-09-01
    • John J. HolmesMilton H. Lackey
    • John J. HolmesMilton H. Lackey
    • B63G9/06G01V3/08H01F13/00
    • B63G9/06G01V3/081H01F13/006
    • A system and method are provided for degaussing a vessel moving over an urwater magnetic detector. A location at the vessel residing over the magnetic detector is continuously provided to a controller. The vessel is equipped with a plurality of degaussing coils such that each is independently controllable. Degaussing coil currents are determined by the controller according to a least squares minimization routine such that an off-board magnetic field of the vessel at the location over the magnetic detector is absolute zero. In addition, the determined coil currents minimize the off-board magnetic field of the vessel at all other locations. The determined coil currents are then applied to the appropriate degaussing coils via separate power supplies.
    • 提供了一种系统和方法,用于对在水下磁检测器上移动的容器进行消磁。 位于磁检测器上的容器上的位置被连续提供给控制器。 容器配备有多个消磁线圈,使得每个消磁线圈可独立控制。 消磁线圈电流由控制器根据最小二乘法最小化程序确定,使得在磁检测器上的位置处的容器的板外磁场为绝对零。 此外,所确定的线圈电流使所有其他位置处的容器的板外磁场最小化。 然后通过单独的电源将确定的线圈电流施加到适当的消磁线圈。