会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • CMOS front end process compatible low stress light shield
    • CMOS前端工艺兼容低应力光屏蔽
    • US07763499B2
    • 2010-07-27
    • US12149807
    • 2008-05-08
    • Jiutao LiJin Li
    • Jiutao LiJin Li
    • H01L21/00
    • H01L27/14643H01L27/14609H01L27/14623H01L27/14685H01L31/02164H01L31/02165
    • An improved imaging device having a pixel arrangement featuring a multilayer light shield. The multilayer light shield includes stacked layers of light-shielding and light-transparent material. The light-transparent material, such as a dielectric, is selected to have a stress, such as a tensile stress, that offsets the stress, such as a compressive stress, of the light shielding material. Without the stress offset, the high compressive stress of the refractory metal could damage the integrity of the nearby silicon. The refractory metal is capable of withstanding the high temperatures associated with front end CMOS processing. The laminate structure allows the light shield to be placed close to the pixel surface. The light-transparent material has a thickness equal to about one-quarter wavelength of the light to be blocked, to act as an anti-reflective coating. An aperture in the light shield exposes the active region of the pixel's photoconversion device.
    • 一种具有特征为多层光屏蔽的像素布置的改进的成像装置。 多层光屏蔽层包括层叠的遮光和透光材料层。 光透明材料(例如电介质)被选择为具有抵消光屏蔽材料的应力(例如压缩应力)的应力,例如拉伸应力。 没有应力偏移,难熔金属的高压缩应力可能会损害附近硅的完整性。 难熔金属能够承受与前端CMOS处理相关的高温。 层压结构允许遮光罩放置在靠近像素表面的位置。 透光材料具有等于被阻挡的光的大约四分之一波长的厚度,用作抗反射涂层。 遮光罩中的光圈暴露像素的光转换装置的有源区域。
    • 7. 发明授权
    • Method and apparatus providing refractive index structure for a device capturing or displaying images
    • 提供用于捕捉或显示图像的装置的折射率结构的方法和装置
    • US07745900B2
    • 2010-06-29
    • US11209752
    • 2005-08-24
    • Jiutao LiJin Li
    • Jiutao LiJin Li
    • H01L27/14
    • G02B1/115G02B1/11H01L27/14603H01L27/1462Y10S977/773
    • A transient index stack having an intermediate transient index layer, for use in an imaging device or a display device, that reduces reflection between layers having different refractive indexes by making a gradual transition from one refractive index to another. Other embodiments include a pixel array in an imaging or display device, an imager system having improved optical characteristics for reception of light by photosensors and a display system having improved optical characteristics for transmission of light by photoemitters. Enhanced reception of light is achieved by reducing reflection between a photolayer, for example, a photosensor or photoemitter, and surrounding media by introducing an intermediate layer with a transient refractive index between the photolayer and surrounding media such that more photons reach the photolayer. The surrounding media can include a protective layer of optically transparent media.
    • 一种具有用于成像装置或显示装置的中间瞬态折射率层的瞬态折射率叠层,其通过从一个折射率向另一个折射率的逐渐转变来减少具有不同折射率的层之间的反射。 其他实施例包括成像或显示装置中的像素阵列,具有改善的光学特性的成像器系统,用于通过光电传感器接收光,并且具有改善的光学特性以用于通过光电发射器传输光的显示系统。 通过在光致抗蚀剂层和周围介质之间引入具有瞬时折射率的中间层,使得更多的光子到达光致变色层,从而减轻光致抗蚀剂例如光电传感器或光电发射体之间的反射以及周围介质来实现增强的光接收。 周围介质可以包括光学透明介质的保护层。
    • 8. 发明授权
    • Method and apparatus for reducing microlens surface reflection
    • 减少微透镜表面反射的方法和装置
    • US07733567B2
    • 2010-06-08
    • US11201291
    • 2005-08-11
    • Jiutao LiJin LiUlrich C. Boettiger
    • Jiutao LiJin LiUlrich C. Boettiger
    • G02B27/10
    • G02B1/118G02B1/11G02B3/0006
    • A microlens has a surface with an effective index of refraction close to the index of air to reduce reflection caused by change in indices of refraction from microlens to air. The microlens having an index of refraction approximately the same as that of air is obtained by providing a rough or bumpy lens-air surface on the microlens. Features protrude from the surface of a microlens to create the rough surface and preferably have a length of greater or equal to a wavelength of light and a width of less than a sub-wavelength of light, from about 1/10 to ¼ of the wavelength of light. The features may be of any suitable shape, including but not limited to triangular, cylindrical, rectangular, trapezoidal, or spherical and may be formed by a variety of suitable processes, including but not limited to mask and etching, lithography, spray-on beads, sputtering, and growing.
    • 微透镜具有接近空气指数的有效折射率的表面,以减少由微透镜到空气的折射率变化引起的反射。 通过在微透镜上提供粗糙或颠簸的透镜空气表面,获得具有与空气大致相同的折射率的微透镜。 特征从微透镜的表面突出以产生粗糙表面,并且优选地具有大于或等于光的波长和小于亚波长的光的长度,大约为波长的1/10至1/4 的光。 特征可以是任何合适的形状,包括但不限于三角形,圆柱形,矩形,梯形或球形,并且可以通过各种合适的工艺形成,包括但不限于掩模和蚀刻,平版印刷,喷涂珠 ,溅射和生长。
    • 9. 发明授权
    • Method and apparatus providing graded-index microlenses
    • 提供渐变折射率微透镜的方法和装置
    • US07564631B2
    • 2009-07-21
    • US11797317
    • 2007-05-02
    • Jin LiJiutao Li
    • Jin LiJiutao Li
    • G02B3/00
    • G02B3/0087G02B3/0012H01L27/14625H01L27/14627H01L27/14643H01L27/14685
    • Microlenses are fabricated with a refractive-index gradient. The refractive-index gradient is produced in a microlens material such that the refractive index is relatively higher in the material nearest the substrate, and becomes progressively lower as the layer gets thicker. After formation of the layer with the refractive-index gradient, material is etched from the layer through a resist to form microlenses. The index of refraction can be adjusted in the microlens material by controlling oxygen and nitrogen content of the microlens materials during deposition. High-oxide material has a lower index of refraction. High-oxide material also exhibits a faster etch-rate. The etching forms the material into a lens shape. After removal of the resist, the microlenses have a lower relative refractive index at their apex, where the index of refraction preferably approaches that of the ambient surroundings. Consequently, light loss by reflection at the ambient/microlens interface is reduced.
    • 用折射率梯度制造微透镜。 在微透镜材料中产生折射率梯度,使得最靠近衬底的材料的折射率相对较高,随着层变厚而变得越来越低。 在形成具有折射率梯度的层之后,通过抗蚀剂从层中蚀刻材料以形成微透镜。 通过在沉积期间控制微透镜材料的氧和氮含量,可以在微透镜材料中调整折射率。 高氧化物材料的折射率较低。 高氧化物材料也具有更快的蚀刻速率。 蚀刻将材料形成为透镜形状。 去除抗蚀剂后,微透镜在其顶点处具有较低的相对折射率,其中折射率优选接近周围环境的折射率。 因此,减少了在环境/微透镜界面处的反射的光损失。