会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • METHOD FOR THE INTUITIVE PILOTING OF A DRONE BY MEANS OF A REMOTE CONTROL
    • 通过远程控制的方式直接引导刮刀
    • US20130173088A1
    • 2013-07-04
    • US13733361
    • 2013-01-03
    • PARROT
    • Francois CallouGilles Foinet
    • B64C39/02
    • B64C39/024A63H27/12A63H30/04G05D1/0033
    • The user inclines the apparatus (16) according to the pitch (32) and roll (34) axes to produce inclination signals (θI, φI) which are transformed into corresponding command setpoints (θd, φd) for the drone (10) in terms of attitude of the drone according to the pitch (22) and roll (24) axes of the drone. The drone and the apparatus each determine the orientation of their local reference frame (XlYlZl; XbYbZb) in relation to an absolute reference frame linked to the ground (XNEDYNEDZNED), to determine the relative angular orientation of the drone in relation to the apparatus. Then, the reference frame of the apparatus is realigned on the reference frame of the drone by a rotation that is a function of this relative angular orientation. The realigned values thus correspond to user commands referenced in the reference frame of the apparatus and no longer in that of the drone, which allows for more intuitive piloting when the user is watching the drone.
    • 使用者根据间距(32)和滚动(34)轴倾斜设备(16)以产生倾斜信号(thetaI,phiI),其被转换成无人机(10)的相应的命令设定点(the tad,phid) 根据无人机的俯仰(22)和滚动(24)轴的无人机的姿态。 无人机和装置各自确定其相对于与地面(XNEDYNEDZNED)相连的绝对参考框架的其局部参考系(XIIIY1; XbYbZb)的取向,以确定无人机相对于该装置的相对角度取向。 然后,通过作为该相对角度取向的函数的旋转,将装置的参考系重新排列在无人机的参考系上。 重新排列的值因此对应于在装置的参考系中引用的用户命令,并且不再是无人机的命令,这允许当用户正在观看无人机时更直观地驾驶。
    • 2. 发明申请
    • ALTITUDE ESTIMATOR FOR A ROTARY-WING DRONE WITH MULTIPLE ROTORS
    • 用于具有多个转子的旋转翼的高度估计器
    • US20130325217A1
    • 2013-12-05
    • US13797781
    • 2013-03-12
    • PARROT
    • Henri SeydouxFrancois CallouMathieu Babel
    • G05D1/04
    • G05D1/042A63H27/12G01C5/005
    • The drone comprises altitude determination means (134), with an estimator (152) combining the measures of an ultrasound telemetry sensor (154) and of a barometric sensor (156) to deliver an absolute altitude value of the drone in a terrestrial system. The estimator comprises a predictive filter (152) incorporating a representation of a dynamic model of the drone making it possible to predict the altitude based on the motor commands (158) and to periodically readjust this prediction as a function of the signals delivered by the telemetry sensor (154) and the barometric sensor (156). Validation means analyze the reflected echoes and possibly modify the parameters of the estimator and/or allow or invalidate the signals of the telemetry sensor. The echo analysis also makes it possible to deduce the presence and the configuration of an obstacle within the operating range of the telemetry sensor, to apply if need be a suitable corrective action.
    • 无人机包括高度确定装置(134),具有组合超声遥测传感器(154)和气压传感器(156)的测量值的估计器(152),以在地面系统中传送无人机的绝对高度值。 估计器包括预测滤波器(152),其包括无人机的动态模型的表示,使得可以基于马达命令(158)预测高度,并且根据遥测传送的信号周期性地重新调整该预测 传感器(154)和气压传感器(156)。 验证意味着分析反射回波并可能修改估计器的参数和/或允许或使无效遥测传感器的信号。 回波分析还可以在遥测传感器的工作范围内推导障碍物的存在和配置,如果需要合适的纠正措施,则可以应用。
    • 4. 发明申请
    • DRONE PROVIDED WITH A VERTICAL-VIEW VIDEO CAMERA COMPENSATED FOR THE INSTANTANEOUS ROTATIONS FOR ESTIMATION OF THE HORIZONTAL SPEEDS
    • 用垂直视角补偿的垂直视频摄像机,用于估算水平速度的瞬时旋转
    • US20160290809A1
    • 2016-10-06
    • US15087883
    • 2016-03-31
    • PARROT DRONES
    • Pierre ElineFrancois Callou
    • G01C21/16G06T7/20B64C39/02
    • G01C21/165B64C39/024B64C2201/127G06T7/20G06T2207/10016
    • A vertical-view camera (16) delivers an image signal (ScamV) of the ground overflown by the drone. Gyrometric sensors (102) measure the Euler angles (φ, θ, Ψ) characterizing the attitude of the drone and delivering a gyrometric signal (Sgyro) representative of the instantaneous rotations. Rotation compensation means (136) receive the image signal and the gyrometric signal and deliver retimed image data, compensated for the rotations, then used to estimate the horizontal speeds of the drone. The camera and the inertial unit are piloted by a common clock (160), and it is provided a circuit (170) for determining the value of the phase-shift between the gyrometric signal and the image signal, and to apply this phase-shift value at the input of the rotation compensation means (136) to resynchronize the image signal onto the gyrometric signal before computation of the retimed image data.
    • 垂直摄像机(16)通过无人机传送溢出的地面的图像信号(ScamV)。 气象传感器(102)测量表征无人机姿态的欧拉角(φ,θ,Ψ),并传送代表瞬时旋转的陀螺仪信号(Sgyro)。 旋转补偿装置(136)接收图像信号和陀螺仪信号,并传送重新定时的图像数据,补偿旋转,然后用于估计无人机的水平速度。 照相机和惯性单元由公共时钟(160)引导,并且其被提供有用于确定陀螺仪信号和图像信号之间的相移值的电路(170),并且应用该相移 在所述旋转补偿装置(136)的输入处的值被重新同步到所述重新定标图像数据的计算之前的所述陀螺仪信号。
    • 5. 发明授权
    • Rotary-wing drone comprising autonomous means for determining a position in an absolute coordinate system linked to the ground
    • 旋翼式无人机包括用于确定与地面连接的绝对坐标系中的位置的自主装置
    • US09387927B2
    • 2016-07-12
    • US14323851
    • 2014-07-03
    • PARROT
    • Michael RischmullerLaure ChevalleyFrancois CallouEtienne Caldichoury
    • B64C39/02G05D1/10
    • B64C39/024B64C2201/024B64C2201/141G05D1/102
    • The drone comprises: a vertical-view camera (132) pointing downward to pick up images of a scene of the ground overflown by the drone; gyrometer, magnetometer and accelerometer sensors (176); and an altimeter (174). Navigation means determine position coordinates (X, Y, Z) of the drone in an absolute coordinate system linked to the ground. These means are autonomous, operating without reception of external signals. They include image analysis means, adapted to derive a position signal from an analysis of known predetermined patterns (210), present in the scene picked up by the camera, and they implement a predictive-filter estimator (172) incorporating a representation of a dynamic model of the drone, with as an input the position signal, a horizontal speed signal, linear and rotational acceleration signals, and an altitude signal.
    • 无人机包括:向下指示的垂直摄像机(132),以拾取由无人机所溢出的地面的场景的图像; 陀螺仪,磁力计和加速度传感器(176); 和高度计(174)。 导航意味着确定无人机在与地面相连的绝对坐标系中的位置坐标(X,Y,Z)。 这些手段是自主的,在没有接收到外部信号的情况下运行。 它们包括图像分析装置,适于从存在于摄像机拾取的场景中的已知预定模式(210)的分析中导出位置信号,并且它们实现了包含动态表示的预测滤波器估计器(172) 无人机的型号,作为输入的位置信号,水平速度信号,线性和旋转加速度信号以及高度信号。
    • 6. 发明授权
    • Altitude estimator for a rotary-wing drone with multiple rotors
    • 具有多个转子的旋转翼无人机的高度估计器
    • US08989924B2
    • 2015-03-24
    • US13797781
    • 2013-03-12
    • Parrot
    • Henri SeydouxFrancois CallouMathieu Babel
    • G05D1/04A63H27/00G01C5/00
    • G05D1/042A63H27/12G01C5/005
    • The drone comprises altitude determination means (134), with an estimator (152) combining the measures of an ultrasound telemetry sensor (154) and of a barometric sensor (156) to deliver an absolute altitude value of the drone in a terrestrial system. The estimator comprises a predictive filter (152) incorporating a representation of a dynamic model of the drone making it possible to predict the altitude based on the motor commands (158) and to periodically readjust this prediction as a function of the signals delivered by the telemetry sensor (154) and the barometric sensor (156). Validation means analyze the reflected echoes and possibly modify the parameters of the estimator and/or allow or invalidate the signals of the telemetry sensor. The echo analysis also makes it possible to deduce the presence and the configuration of an obstacle within the operating range of the telemetry sensor, to apply if need be a suitable corrective action.
    • 无人机包括高度确定装置(134),具有组合超声遥测传感器(154)和气压传感器(156)的测量值的估计器(152),以在地面系统中传送无人机的绝对高度值。 估计器包括预测滤波器(152),其包括无人机的动态模型的表示,使得可以基于马达命令(158)预测高度,并且根据遥测传送的信号周期性地重新调整该预测 传感器(154)和气压传感器(156)。 验证意味着分析反射回波并可能修改估计器的参数和/或允许或使无效遥测传感器的信号。 回波分析还可以在遥测传感器的工作范围内推导障碍物的存在和配置,如果需要合适的纠正措施,则可以应用。
    • 8. 发明授权
    • Method for the intuitive piloting of a drone by means of a remote control
    • 通过遥控器直观地驾驶无人机的方法
    • US08594862B2
    • 2013-11-26
    • US13733361
    • 2013-01-03
    • Parrot
    • Francois CallouGilles Foinet
    • B64C39/02
    • B64C39/024A63H27/12A63H30/04G05D1/0033
    • The user inclines the apparatus (16) according to the pitch (32) and roll (34) axes to produce inclination signals (θI, φI) which are transformed into corresponding command setpoints (θd, φd) for the drone (10) in terms of attitude of the drone according to the pitch (22) and roll (24) axes of the drone. The drone and the apparatus each determine the orientation of their local reference frame (XlYlZl; XbYbZb) in relation to an absolute reference frame linked to the ground (XNEDYNEDZNED), to determine the relative angular orientation of the drone in relation to the apparatus. Then, the reference frame of the apparatus is realigned on the reference frame of the drone by a rotation that is a function of this relative angular orientation. The realigned values thus correspond to user commands referenced in the reference frame of the apparatus and no longer in that of the drone, which allows for more intuitive piloting when the user is watching the drone.
    • 使用者根据间距(32)和滚动(34)轴倾斜设备(16)以产生倾斜信号(thetaI,phiI),其被转换成无人机(10)的相应的命令设定点(the tad,phid) 根据无人机的俯仰(22)和滚动(24)轴的无人机的姿态。 无人机和装置各自确定其相对于与地面(XNEDYNEDZNED)相连的绝对参考框架的其局部参考系(XIIIY1; XbYbZb)的取向,以确定无人机相对于该装置的相对角度取向。 然后,通过作为该相对角度取向的函数的旋转,将装置的参考系重新排列在无人机的参考系上。 重新排列的值因此对应于在装置的参考系中引用的用户命令,并且不再是无人机的命令,这允许当用户正在观看无人机时更直观地驾驶。
    • 9. 发明授权
    • Method for controlling a multi-rotor rotary-wing drone, with cross wind and accelerometer bias estimation and compensation
    • 用于控制多转子旋转翼无人机的方法,具有交叉风和加速度计偏差估计和补偿
    • US09488978B2
    • 2016-11-08
    • US14388761
    • 2013-03-27
    • PARROT
    • Francois CallouGilles Foinet
    • G05D1/00G05D1/02B64C27/08B64C39/02
    • G05D1/0011B64C27/08B64C39/024B64C2201/024B64C2201/14B64C2201/141B64C2201/146G05D1/0204
    • The attitude and speed of the drone are controlled by angular commands applied to a control loop (120) for controlling the engines of the drone according to the pitch and roll axes. A dynamic model of the drone, including, in particular, a Kalman predictive filter, represents the horizontal speed components of the drone on the basis of the drone mass and drag coefficients, the Euler angles of the drone relative to an absolute terrestrial reference, and the rotation of same about a vertical axis. The acceleration of the drone along the three axes and the relative speed of same in relation to the ground are measured and applied to the model as to estimate (128) the horizontal speed components of the cross wind. This estimation can be used to generate corrective commands (126) that are combined with the angular commands applied to the control loop of the drone in terms of pitch and roll.
    • 无人机的姿态和速度由施加到用于根据俯仰和滚动轴线控制无人机的发动机的控制回路(120)的角度指令来控制。 无人机的动态模型,特别是卡尔曼预测滤波器,基于无人机质量和阻力系数,无人机相对于绝对地面参考的欧拉角,代表无人机的水平速度分量,以及 相对于垂直轴的旋转。 测量无人机沿三轴的加速度和相对于地面的相对速度,并将其应用于模型,以估计(128)横风的水平速度分量。 该估计可以用于产生校正命令(126),其与在俯仰和滚动方面对无人机的控制回路施加的角度指令组合。
    • 10. 发明申请
    • METHOD FOR CONTROLLING A MULTI-ROTOR ROTARY-WING DRONE, WITH CROSS WIND AND ACCELEROMETER BIAS ESTIMATION AND COMPENSATION
    • 用于控制多转轮旋转叶片的方法,具有跨越风速和加速度计偏差估计和补偿
    • US20150057844A1
    • 2015-02-26
    • US14388761
    • 2013-03-27
    • PARROT
    • Francois CallouGilles Foinet
    • G05D1/00B64C39/02B64C27/08
    • G05D1/0011B64C27/08B64C39/024B64C2201/024B64C2201/14B64C2201/141B64C2201/146G05D1/0204
    • The attitude and speed of the drone are controlled by angular commands applied to a control loop (120) for controlling the engines of the drone according to the pitch and roll axes. A dynamic model of the drone, including, in particular, a Kalman predictive filter, represents the horizontal speed components of the drone on the basis of the drone mass and drag coefficients, the Euler angles of the drone relative to an absolute terrestrial reference, and the rotation of same about a vertical axis. The acceleration of the drone along the three axes and the relative speed of same in relation to the ground are measured and applied to the model as to estimate (128) the horizontal speed components of the cross wind. This estimation can be used to generate corrective commands (126) that are combined with the angular commands applied to the control loop of the drone in terms of pitch and roll.
    • 无人机的姿态和速度由施加到用于根据俯仰和滚动轴线控制无人机的发动机的控制回路(120)的角度指令来控制。 无人机的动态模型,特别是卡尔曼预测滤波器,基于无人机质量和阻力系数,无人机相对于绝对地面参考的欧拉角,代表无人机的水平速度分量,以及 相对于垂直轴的旋转。 测量无人机沿三轴的加速度和相对于地面的相对速度,并将其应用于模型,以估计(128)横风的水平速度分量。 该估计可以用于产生校正命令(126),其与在俯仰和滚动方面对无人机的控制回路施加的角度指令组合。