会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Gait generating system and control device of legged mobile robot
    • 腿式移动机器人的步态发生系统和控制装置
    • US07991508B2
    • 2011-08-02
    • US11572677
    • 2005-07-28
    • Tadaaki HasegawaNaohide Ogawa
    • Tadaaki HasegawaNaohide Ogawa
    • B25J13/00G05B15/00
    • B62D57/032
    • A gait generating system of a legged mobile robot is provided with a device for determining a desired trajectory of an external force to be applied to a robot 1, a device for determining a parameter of a desired gait (current time gait) for a predetermined period on the basis of a desired trajectory of an external force or the like, a device for determining a parameter of a virtual cyclic gait that follows the current time gait on the basis of the desired trajectory of the external force or the like, a device for correcting the current time gait parameter such that a body motion trajectory of the robot 1 of the current time gait converges to a body motion trajectory of the cyclic gait, and a device for sequentially determining an instantaneous value of the current time gait on the basis of the corrected current time gait parameter. With this arrangement, in an environment wherein an external force acts on a robot as necessary, a desired gait that allows continual stability of the robot to be secured can be generated even if the external force suddenly changes.
    • 腿式移动机器人的步态生成系统设置有用于确定要施加到机器人1的外力的期望轨迹的装置,用于在预定时段内确定期望步态(当前时间步态)的参数的装置 基于期望的外力等的轨迹等的装置,用于基于外力等的期望轨迹确定跟随当前时间步态的虚拟循环步态的参数的装置,用于 校正当前时间步态参数,使得当前时间步态的机器人1的身体运动轨迹收敛到循环步态的身体运动轨迹,以及用于依次确定当前时间步态的瞬时值的装置 校正的当前时间步态参数。 利用这种布置,在外力根据需要作用于机器人的环境中,即使外力突然变化,也可以产生允许保持机器人持续稳定的期望的步态。
    • 2. 发明申请
    • CONTROLLER OF MOBILE ROBOT
    • 手机机器人控制器
    • US20090148035A1
    • 2009-06-11
    • US12329056
    • 2008-12-05
    • Nobuyuki OhnoTadaaki Hasegawa
    • Nobuyuki OhnoTadaaki Hasegawa
    • G06K9/00
    • G06T7/20G05D1/0246G05D1/027G05D1/0274G05D2201/0211G05D2201/0217G06T2207/10016G06T2207/30252
    • A controller of a mobile robot that moves an object such that the position of a representative point of the object and the posture of the object follow a desired position and posture trajectory is provided. The desired posture trajectory of the object includes the desired value of the angular difference about a yaw axis between a reference direction, which is a direction orthogonal to the yaw axis of the object, and the direction of the moving velocity vector of the representative point of the object, defined by the desired position trajectory. The controller has a desired angular difference setting means which variably sets the desired value of the angular difference according to at least a required condition related to a movement mode of the object. This allows the object to be moved at a posture which meets the required condition of the movement mode.
    • 提供了移动机器人的控制器,其移动物体,使得物体的代表点的位置和物体的姿势遵循期望的位置和姿势轨迹。 物体的期望的姿势轨迹包括在作为与物体的偏航轴正交的方向的参考方向与代表点的移动速度矢量的方向之间的偏转轴的角度差的期望值 该对象由所需的位置轨迹定义。 控制器具有期望的角度差设定装置,其根据至少与物体的移动模式有关的必要条件可变地设定角度差的期望值。 这允许物体以满足移动模式的所需条件的姿势移动。
    • 3. 发明授权
    • Legged mobile robot controller, legged mobile robot and legged mobile robot control method
    • 腿式移动机器人控制器,有腿移动机器人和腿式移动机器人控制方法
    • US07330775B2
    • 2008-02-12
    • US11636465
    • 2006-12-11
    • Atsuo OritaTadaaki HasegawaKenichiro Sugiyama
    • Atsuo OritaTadaaki HasegawaKenichiro Sugiyama
    • G06F19/00
    • B62D57/032
    • A legged mobile robot, a legged mobile robot controller and a legged mobile robot control method are provided to perform a loading operation to load a gripped object in parallel on a target place having a height where a stretchable range of arm portions of the legged mobile robot is enhanced with no operator's handling. The legged mobile robot includes the arm portions having links for gripping an object, and leg portions having links for moving, and the arm and the leg portions are joined to a body thereof. The legged mobile robot controller includes a data acquisition unit, a whole-body cooperative motion control unit and a loading detection unit, and controls motions of the legged mobile robot based on posture/position data regarding a posture/position of each link of the legged mobile robot and on an external force data regarding an external force affecting the arm portions.
    • 提供有腿的移动机器人,有腿的移动机器人控制器和有腿的移动机器人控制方法来执行加载操作,以将被夹持物体平行地装载在具有高度的目标位置上,腿的可移动机器人的臂部分的可伸缩范围 增强了操作员的操作。 有腿可动机器人包括具有用于夹持物体的连杆的臂部和具有用于移动的连杆的腿部,并且臂和腿部与其主体接合。 有腿的移动机器人控制器包括数据采集单元,全身协作运动控制单元和装载检测单元,并且基于关于腿的每个链节的姿势/位置的姿势/位置数据来控制有腿的移动机器人的运动 移动机器人和关于影响臂部分的外力的外力数据。
    • 5. 发明授权
    • Controller of mobile robot
    • 移动机器人控制器
    • US08340823B2
    • 2012-12-25
    • US12329056
    • 2008-12-05
    • Nobuyuki OhnoTadaaki Hasegawa
    • Nobuyuki OhnoTadaaki Hasegawa
    • B25J9/10G05B19/04B25J5/00B62D57/032
    • G06T7/20G05D1/0246G05D1/027G05D1/0274G05D2201/0211G05D2201/0217G06T2207/10016G06T2207/30252
    • A controller of a mobile robot that moves an object such that the position of a representative point of the object and the posture of the object follow a desired position and posture trajectory is provided. The desired posture trajectory of the object includes the desired value of the angular difference about a yaw axis between a reference direction, which is a direction orthogonal to the yaw axis of the object, and the direction of the moving velocity vector of the representative point of the object, defined by the desired position trajectory. The controller has a desired angular difference setting means which variably sets the desired value of the angular difference according to at least a required condition related to a movement mode of the object. This allows the object to be moved at a posture which meets the required condition of the movement mode.
    • 提供了移动机器人的控制器,其移动物体,使得物体的代表点的位置和物体的姿势遵循期望的位置和姿势轨迹。 物体的期望的姿势轨迹包括在作为与物体的偏航轴正交的方向的参考方向与代表点的移动速度矢量的方向之间的偏转轴的角度差的期望值 该对象由所需的位置轨迹定义。 控制器具有期望的角度差设定装置,其根据至少与物体的移动模式有关的必要条件可变地设定角度差的期望值。 这允许物体以满足移动模式的所需条件的姿势移动。
    • 6. 发明申请
    • REINFORCEMENT LEARNING APPARATUS, CONTROL APPARATUS, AND REINFORCEMENT LEARNING METHOD
    • 加强学习装置,控制装置和加固学习方法
    • US20120253514A1
    • 2012-10-04
    • US13432094
    • 2012-03-28
    • Norikazu SugimotoYugo UedaTadaaki HasegawaSoshi IbaKoji Akatsuka
    • Norikazu SugimotoYugo UedaTadaaki HasegawaSoshi IbaKoji Akatsuka
    • G05B19/04
    • G05B13/0265Y10S901/03
    • It is possible to perform robot motor learning in a quick and stable manner using a reinforcement learning apparatus including: a first-type environment parameter obtaining unit that obtains a value of one or more first-type environment parameters; a control parameter value calculation unit that calculates a value of one or more control parameters maximizing a reward by using the value of the one or more first-type environment parameters; a control parameter value output unit that outputs the value of the one or more control parameters to the control object; a second-type environment parameter obtaining unit that obtains a value of one or more second-type environment parameters; a virtual external force calculation unit that calculates the virtual external force by using the value of the one or more second-type environment parameters; and a virtual external force output unit that outputs the virtual external force to the control object.
    • 可以使用强化学习装置以快速且稳定的方式执行机器人电动机学习,包括:获得一个或多个第一类型环境参数的值的第一类型环境参数获取单元; 控制参数值计算单元,其通过使用所述一个或多个第一类型环境参数的值来计算使奖励最大化的一个或多个控制参数的值; 控制参数值输出单元,其将所述一个或多个控制参数的值输出到所述控制对象; 获取一个或多个第二类型环境参数的值的第二类型环境参数获取单元; 虚拟外力计算单元,其通过使用所述一个或多个第二类型环境参数的值来计算所述虚拟外力; 以及将虚拟外力输出到控制对象的虚拟外力输出单元。
    • 7. 发明申请
    • MOBILE ROBOT CONTROL SYSTEM
    • 移动机器人控制系统
    • US20110077776A1
    • 2011-03-31
    • US11989629
    • 2006-07-10
    • Kuniaki MatsushimaTadaaki HasegawaYuichiro Kawaguchi
    • Kuniaki MatsushimaTadaaki HasegawaYuichiro Kawaguchi
    • B25J13/00
    • B62D57/032G05B2219/40195
    • In a mobile robot control system, it is configured such that the robot generates time-series data sequentially at a predetermined time interval and transmits them to the external terminal, and the external terminal receives the transmitted time-series data and adds them to the motion command, such that the motion of the robot is determined based on the generated time-series data and the time-series data added to the motion command. With this, it becomes possible to prevent the robot from suddenly starting to move at the time when the communication between the external terminal which is a transmitting source of the motion command and the robot has recovered from disconnection, thereby enabling to avoid making the operator feel unnatural.
    • 在移动机器人控制系统中,其被配置为使得机器人以预定时间间隔顺序地生成时间序列数据并将其发送到外部终端,并且外部终端接收所发送的时间序列数据并将其相加到运动 使得基于生成的时间序列数据和添加到运动命令的时间序列数据来确定机器人的运动。 由此,能够防止机器人在作为运动指令的发送源的外部端子与机器人之间的通信从断开恢复时突然开始移动,从而能够避免使操作者感觉到 不自然
    • 8. 发明授权
    • Controller of leg type moving robot
    • 腿型移动机器人控制器
    • US07848849B2
    • 2010-12-07
    • US11575925
    • 2005-07-28
    • Tadaaki Hasegawa
    • Tadaaki Hasegawa
    • G05B19/00
    • B62D57/032
    • A controller of a leg type moving robot determines an action force to be input to an object dynamic model 2 such that a motion state amount (object model velocity) of the object dynamic model 2 follows a desired motion state amount based on a moving plan of an object, and also determines a manipulated variable of the motion state amount (object model velocity) of the object dynamic model 2 such that the difference between an actual object position and a desired object position approximates zero, and then inputs the determined action force and manipulated variable to the object dynamic model 2 to sequentially determine the desired object position. Further, a desired object reaction force to a robot from the object is determined from the determined reaction force. This arrangement causes the robot to perform an operation of moving an object while securing stability of the robot by determining the desired motion of the object and the desired value of an action force between the object and the robot while minimizing the difference between a motion state of the object on the object dynamic model and an actual motion state.
    • 腿型移动机器人的控制器确定要输入到对象动态模型2的动作力,使得对象动态模型2的运动状态量(对象模型速度)基于移动计划 并且还确定对象动态模型2的运动状态量(对象模型速度)的操纵变量,使得实际对象位置与期望对象位置之间的差近似为零,然后输入确定的动作力和 操纵变量到对象动态模型2,以顺序确定所需的对象位置。 此外,根据确定的反作用力确定从物体到机器人的期望的物体反作用力。 这种布置使机器人执行移动物体的操作,同时通过确定物体的期望运动和物体与机器人之间的作用力的期望值来确保机器人的稳定性,同时使运动状态 对象上的对象动态模型和实际运动状态。
    • 9. 发明申请
    • Gait Generator of Legged Mobile Robot
    • 有腿移动机器人的步态发生器
    • US20080133055A1
    • 2008-06-05
    • US11576656
    • 2005-07-28
    • Tadaaki Hasegawa
    • Tadaaki Hasegawa
    • G05B13/04
    • B62D57/032
    • A gait generator determines a desired motional trajectory and a desired object reaction force trajectory of an object 120 for a predetermined period after the current time by using an object dynamic model while supplying, to the object dynamic model, a model manipulated variable (estimated disturbance force) for bringing a behavior of the object 120 on the object dynamic model close to an actual behavior, and provisionally generates a gait of a robot 1 for a predetermined period by using the aforesaid determined trajectories. Based on the gait and an object desired motion trajectory, a geometric restrictive condition, such as interference between the robot 1 and the object 120, is checked, and a moving plan for the object 120 or a gait parameter (predicted landing position/posture or the like) of the robot1 is corrected as appropriate according to a result of the check, so as to generate a gait of the robot 1. Thus, a desired gait that satisfies a predetermined geometric restrictive condition related to the interference between the robot 1 and an object is generated by reflecting an actual environmental condition in real time while carrying out the operational control of the robot 1.
    • 步态发生器通过使用对象动态模型在当前时间之后的预定时间段内确定对象120的期望的运动轨迹和期望的物体反作用力轨迹,同时向对象动态模型提供模型操作变量(估计的扰动力 ),用于将对象120的行为导向接近实际行为的对象动态模型,并且通过使用上述确定的轨迹临时生成机器人1的步态达预定时间段。 基于步态和对象期望的运动轨迹,检查诸如机器人1和对象120之间的干扰的几何限制条件,以及对象120的移动计划或步态参数(预测的着陆位置/姿势或 类似物)根据检查结果被适当地校正,以便产生机器人1的步态。 因此,通过在执行机器人1的操作控制的同时反映实际环境条件来生成满足与机器人1和物体之间的干涉相关的预定几何限制条件的期望步态。