会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Method for Training Crew in a Flight Simulator
    • 在飞行模拟器中训练船员的方法
    • US20160358498A1
    • 2016-12-08
    • US15137008
    • 2016-04-25
    • The Boeing Company
    • Lars FuckeBruno Correia Gracio
    • G09B9/16G09B9/20G09B9/18
    • G09B9/16G09B5/067G09B7/04G09B9/08G09B9/18G09B9/20G09B9/203G09B9/206G09B19/165
    • A method for training flight crew in a flight simulator that comprises opening a database of flight events, wherein each flight event has desired flight crew performance (DFCP) data that comprise user data associated with expected user actions; generating a training session by selecting at least one flight event from the database of flight events; running the training session in the flight simulator with at least one student; gathering student data based on student actions during the training session; and comparing the gathered student data to the DFCP data corresponding to the same at least one flight event to produce a comparison result. The obtained comparison result allows establishing whether required flight competencies associated with the generated training session have been reached by the student.
    • 一种在飞行模拟器中训练飞行机组的方法,包括打开飞行事件数据库,其中每个飞行事件具有期望的飞行机组性能(DFCP)数据,其包括与预期用户动作相关联的用户数据; 通过从飞行事件数据库中选择至少一个航班事件来产生训练课程; 至少有一名学生在飞行模拟器中进行训练; 在培训期间根据学生动作收集学生资料; 以及将所收集的学生数据与对应于相同的至少一个飞行事件的DFCP数据进行比较以产生比较结果。 获得的比较结果允许确定是否已经由学生达到与所产生的训练课程相关联的所需飞行能力。
    • 3. 发明申请
    • Method and System for Calculating Aircraft Speed Changes
    • 计算飞机速度变化的方法和系统
    • US20150066254A1
    • 2015-03-05
    • US14471375
    • 2014-08-28
    • The Boeing Company
    • Christian GrabowLars Fucke
    • G08G5/00G08G5/04G05D1/00
    • G08G5/0017G05D1/104G08G5/0021G08G5/0026G08G5/0078G08G5/0082G08G5/025G08G5/04
    • Methods and systems for determining a change of speed of an aircraft for enabling the avoidance of conflicts between aircraft trajectories. The method of determining a change in speed of an aircraft, comprises the steps of: defining a merge point and a tie point; monitoring a first aircraft; determining when the first aircraft passes the tie point; providing trajectory data; predicting a trajectory of a second aircraft using the trajectory data; defining a minimum permissible longitudinal spacing; predicting a longitudinal spacing between the first and second aircraft at the merge point based on the predicted trajectory; and if the minimum permissible longitudinal spacing is greater than the predicted longitudinal spacing then calculating a proposed change in speed of the second aircraft that will result in the longitudinal spacing between the first and second aircraft at the merge point being greater than or equal to the minimum permissible longitudinal spacing.
    • 确定飞机速度变化的方法和系统,以避免飞机轨迹之间的冲突。 确定飞行器速度变化的方法包括以下步骤:定义合并点和连接点; 监控第一架飞机; 确定第一架飞机何时通过连接点; 提供轨迹数据; 使用所述轨迹数据预测第二飞行器的轨迹; 定义最小允许纵向间距; 基于预测的轨迹预测合并点处的第一和第二飞行器之间的纵向间距; 并且如果最小允许的纵向间距大于预测的纵向间距,则计算第二飞行器的提出的速度变化,这将导致在合并点处的第一和第二飞行器之间的纵向间隔大于或等于最小 允许的纵向间距。
    • 6. 发明授权
    • Method and system for calculating aircraft speed changes
    • 计算飞机速度变化的方法和系统
    • US09324237B2
    • 2016-04-26
    • US14471375
    • 2014-08-28
    • The Boeing Company
    • Christian GrabowLars Fucke
    • G08G5/00G08G5/04G05D1/00G05D1/10G08G5/02
    • G08G5/0017G05D1/104G08G5/0021G08G5/0026G08G5/0078G08G5/0082G08G5/025G08G5/04
    • Methods and systems for determining a change of speed of an aircraft for enabling the avoidance of conflicts between aircraft trajectories. The method of determining a change in speed of an aircraft, comprises the steps of: defining a merge point and a tie point; monitoring a first aircraft; determining when the first aircraft passes the tie point; providing trajectory data; predicting a trajectory of a second aircraft using the trajectory data; defining a minimum permissible longitudinal spacing; predicting a longitudinal spacing between the first and second aircraft at the merge point based on the predicted trajectory; and if the minimum permissible longitudinal spacing is greater than the predicted longitudinal spacing then calculating a proposed change in speed of the second aircraft that will result in the longitudinal spacing between the first and second aircraft at the merge point being greater than or equal to the minimum permissible longitudinal spacing.
    • 确定飞机速度变化的方法和系统,以避免飞机轨迹之间的冲突。 确定飞行器速度变化的方法包括以下步骤:定义合并点和连接点; 监控第一架飞机; 确定第一架飞机何时通过连接点; 提供轨迹数据; 使用所述轨迹数据预测第二飞行器的轨迹; 定义最小允许纵向间距; 基于预测的轨迹预测合并点处的第一和第二飞行器之间的纵向间距; 并且如果最小允许的纵向间距大于预测的纵向间距,则计算第二飞行器的提出的速度变化,这将导致在合并点处的第一和第二飞行器之间的纵向间隔大于或等于最小 允许的纵向间距。
    • 7. 发明申请
    • FAILURE ANALYSIS SYSTEM
    • 故障分析系统
    • US20150344149A1
    • 2015-12-03
    • US14490458
    • 2014-09-18
    • THE BOEING COMPANY
    • Randall J. MumawRoger NicholsonLars Fucke
    • B64D45/00G07C5/08
    • B64D45/00B64D2045/0085G05B23/0251G05B23/027G05B2219/45071G07C5/0808G07C5/0816G07C5/0841
    • A failure analysis system for monitoring sub-system failures in an aircraft that comprises a plurality of sub-systems, the aircraft having a plurality of functions, wherein each function is available when one or more associated sub-systems is operating correctly. The failure analysis system comprising: a plurality of monitors for monitoring the status of one or more sub-systems of the aircraft and determining if a failure has occurred; a memory arranged to store a list of a plurality of flight phases or operating modes to be completed by the monitored system and data associating one or more of the functions with each flight phase or operating mode; and a processor in communication with the monitors and the memory and arranged to model the response of the sub-systems to a failure determined by the monitors to identify which functions required by the flight phases or operating modes are degraded or are not available.
    • 一种用于监视包括多个子系统的飞机中的子系统故障的故障分析系统,所述飞机具有多个功能,其中当一个或多个相关联的子系统正常工作时,每个功能可用。 该故障分析系统包括:多个监视器,用于监视飞行器的一个或多个子系统的状态并确定是否发生故障; 存储器,其被布置成存储由所监视的系统完成的多个飞行阶段或操作模式的列表以及将一个或多个功能与每个飞行阶段或操作模式相关联的数据; 以及与监视器和存储器通信的处理器,并且被布置成将子系统的响应建模到由监视器确定的故障,以识别飞行阶段或操作模式所需的功能降级或不可用。
    • 9. 发明授权
    • Failure analysis system
    • 故障分析系统
    • US09540117B2
    • 2017-01-10
    • US14490458
    • 2014-09-18
    • THE BOEING COMPANY
    • Randall J. MumawRoger NicholsonLars Fucke
    • B64D45/00G07C5/08G05B23/02
    • B64D45/00B64D2045/0085G05B23/0251G05B23/027G05B2219/45071G07C5/0808G07C5/0816G07C5/0841
    • A failure analysis system for monitoring sub-system failures in an aircraft that comprises a plurality of sub-systems, the aircraft having a plurality of functions, wherein each function is available when one or more associated sub-systems is operating correctly. The failure analysis system comprising: a plurality of monitors for monitoring the status of one or more sub-systems of the aircraft and determining if a failure has occurred; a memory arranged to store a list of a plurality of flight phases or operating modes to be completed by the monitored system and data associating one or more of the functions with each flight phase or operating mode; and a processor in communication with the monitors and the memory and arranged to model the response of the sub-systems to a failure determined by the monitors to identify which functions required by the flight phases or operating modes are degraded or are not available.
    • 一种用于监视包括多个子系统的飞机中的子系统故障的故障分析系统,所述飞机具有多个功能,其中当一个或多个相关联的子系统正常工作时,每个功能可用。 该故障分析系统包括:多个监视器,用于监视飞行器的一个或多个子系统的状态并确定是否发生故障; 存储器,其被布置成存储由所监视的系统完成的多个飞行阶段或操作模式的列表以及将一个或多个功能与每个飞行阶段或操作模式相关联的数据; 以及与监视器和存储器通信的处理器,并且被布置成将子系统的响应建模到由监视器确定的故障,以识别飞行阶段或操作模式所需的功能降级或不可用。
    • 10. 发明申请
    • Method of Flying an Unmanned Aerial Vehicle
    • 飞行无人机的方法
    • US20140288730A1
    • 2014-09-25
    • US14189603
    • 2014-02-25
    • The Boeing Company
    • Lars FuckeStephen Sweeney
    • B64C19/00
    • B64C19/00G05D1/0005G05D1/101
    • A method of flying an unmanned aerial vehicle (UAV) in response to emergency conditions, the method including steps implemented using a controller forming part of the unmanned aerial vehicle, said steps comprising: defining a plurality of emergency conditions; associating each emergency condition with a priority level; associating each emergency condition with an objective; sensing a plurality of operating parameters of the unmanned aerial vehicle to detect whether one of the plurality of emergency conditions exists; when one or more emergency condition is detected: generating a trajectory for the detected emergency condition having a highest associated priority level, wherein the trajectory is generated in accordance with the objective associated with the emergency condition that has the highest associated priority level; and instructing the unmanned aerial vehicle to follow the generated trajectory.
    • 一种响应于紧急情况飞行无人机(UAV)的方法,所述方法包括使用构成无人机的一部分的控制器实现的步骤,所述步骤包括:定义多个紧急情况; 将每个紧急情况与优先级相关联; 将每个紧急情况与目标相关联; 感测所述无人机的多个操作参数,以检测所述多个紧急情况中的一个是否存在; 当检测到一个或多个紧急情况时:产生具有最高关联优先级的检测到的紧急情况的轨迹,其中根据与具有最高关联优先级的紧急情况相关联的目标产生轨迹; 并指示无人驾驶飞机跟随所产生的轨迹。