会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Electrically-isolated and moisture-resistant designs for wearable devices
    • US10182750B1
    • 2019-01-22
    • US15964227
    • 2018-04-27
    • Verily Life Sciences LLC
    • Mandy PhilippineScott MatulaJohan VanderhaegenLouis JungNivi Arumugam
    • H05K7/00A61B5/145A61B5/00A61B5/157A61B5/1486
    • An example continuous glucose monitor includes a printed circuit board (“PCB”) having first and second outer layers and an inner layer, the inner layer disposed between the first and second outer layers; a semiconductor package having four corner portions and a plurality of pins, the semiconductor package coupled to the first outer layer of the PCB via the plurality of pins; an electrical ground plane formed on the PCB and coupled to at least one pin at each of a first, second, and third of the four corner portions, and not coupled to any pins at a fourth corner portion; an electrical contact for a sensor wire formed on the second outer layer of the PCB; a sensor trace having a first portion disposed on the first outer layer, a second portion disposed on the inner layer, and a third portion disposed on the second outer layer, the sensor trace having a first end coupled to a first pin of the plurality of pins and a second end coupled to the electrical contact for the sensor wire, the first pin at the fourth corner of the semiconductor package; a plurality of guard rings disposed on the PCB, each guard ring encircling one of the portions of the sensor trace; and an encapsulant disposed around a perimeter of the semiconductor package, the encapsulant covering (i) the plurality of pins, (ii) the first portion of the sensor trace, (iii) the third portion of the sensor trace, wherein an upper surface of the semiconductor package remains exposed.
    • 2. 发明授权
    • Systems and methods for enabling NFC communications with a wearable biosensor
    • US11038555B2
    • 2021-06-15
    • US16528798
    • 2019-08-01
    • Verily Life Sciences LLC
    • William BiedermanAnil Kumar Ram RakhyaniLouis JungStephen O'Driscoll
    • H04B5/00H01Q1/27A61B5/145H01Q11/08H01Q7/00
    • One example system for enabling NFC communications with a wearable biosensor includes a biosensor applicator including a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; a first applicator coil antenna physically coupled to the housing and defined within a first plane; and a second applicator coil antenna physically coupled to the housing and defined within a second plane substantially parallel to and different from the first plane, the second applicator coil antenna positioned coaxially with respect to the first applicator coil antenna, wherein the first applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a transmitter coil antenna of a remote device and provide at least a first portion of the received EM energy to the second coil antenna; and a biosensor device including a biosensor coil antenna defined within a third plane substantially parallel to and different than the first and second planes; a wireless receiver electrically coupled to the biosensor coil antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned within the cavity; wherein the biosensor coil antenna is positioned and oriented substantially coaxially with respect to the second applicator coil antenna, and wherein the second applicator coil antenna is configured to receive EM energy from the first applicator coil antenna and wirelessly transmit at least a second portion of the received EM energy to the biosensor coil antenna.
    • 5. 发明申请
    • SYSTEMS AND METHODS FOR ENABLING NFC COMMUNICATIONS WITH A WEARABLE BIOSENSOR
    • US20200044695A1
    • 2020-02-06
    • US16528798
    • 2019-08-01
    • Verily Life Sciences LLC
    • William BiedermanAnil Kumar Ram RakhyaniLouis JungStephen O'Driscoll
    • H04B5/00H01Q1/27H01Q7/00H01Q11/08A61B5/145
    • One example system for enabling NFC communications with a wearable biosensor includes a biosensor applicator including a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; a first applicator coil antenna physically coupled to the housing and defined within a first plane; and a second applicator coil antenna physically coupled to the housing and defined within a second plane substantially parallel to and different from the first plane, the second applicator coil antenna positioned coaxially with respect to the first applicator coil antenna, wherein the first applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a transmitter coil antenna of a remote device and provide at least a first portion of the received EM energy to the second coil antenna; and a biosensor device including a biosensor coil antenna defined within a third plane substantially parallel to and different than the first and second planes; a wireless receiver electrically coupled to the biosensor coil antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned within the cavity; wherein the biosensor coil antenna is positioned and oriented substantially coaxially with respect to the second applicator coil antenna, and wherein the second applicator coil antenna is configured to receive EM energy from the first applicator coil antenna and wirelessly transmit at least a second portion of the received EM energy to the biosensor coil antenna.