会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Automatic optical inspection device and method
    • US11549891B2
    • 2023-01-10
    • US16306433
    • 2017-07-31
    • SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    • Hailiang LuJunwei JiaPengli ZhangHongji ZhouWen XuFan Wang
    • G01N21/88G01N21/01
    • An automatic optical inspection (AOI) device and method are disclosed. The device is adapted to inspect an object under inspection (OUI) (102) carried on a workpiece stage (101) and includes: a plurality of detectors (111, 112) for capturing images of the OUI (102); a plurality of light sources (121, 122) for illuminating the OUI (102) in different illumination modes; and a synchronization controller (140) signal-coupled to both the plurality of detectors (111, 112) and the plurality of light sources (121, 122). The synchronization controller (140) is configured to directly or indirectly control the plurality of detectors (111, 112) and the plurality of light sources (121, 122) based on the position of the OUI (102) so that each of them is individually activated and deactivated according to a timing profile, that each of the detectors (111, 112) is able to capture images of the OUI (102) in an illumination mode provided by a corresponding one of the light sources (121, 122), and that when any one of the light sources (121, 122) is illuminating the OUI (102), only the one of the detectors (111, 112) corresponding to this light source (121, 122) is activated. Through the timing control over the multiple light sources (121, 122) and detectors (111, 112) by the synchronization controller (140), inspection with multiple measurement configurations can be accomplished within a single scan, resulting in a significant improvement in inspection efficiency.
    • 4. 发明授权
    • De-bonding leveling device and de-bonding method
    • US10971380B2
    • 2021-04-06
    • US16321682
    • 2017-07-27
    • SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    • Yuying GaoWei Wei
    • B32B43/00H01L21/67B32B38/10
    • A debonding leveling device and a debonding method are for leveling during a process for debonding a first object and a second object. The first and second objects are retained by a first fixation plate (11) and a second fixation plate (21), respectively. The device includes: a mounting plate (30), disposed at an outer side of one of the first (11) and second (21) fixation plates; a connecting rod assembly (40) fixed around a center position of the mounting plate (30), the connecting rod assembly (40) connected to the one of the first (11) and second (21) fixation plates sequentially via a sliding pair (50) and a spherical pair (60) connected to the sliding pair (50); and at least three elastic assemblies (70) disposed between the mounting plate and the one of the first and second fixation plates, each of the elastic assemblies coupled to the mounting plate (30) and the one of the first (11) and second (21) fixation plates. The combination of the spherical pair and the sliding pair allows an adaptation of leveling objects to dynamic changes of the reference, and the elastic assemblies performs a leveling for the leveling objects in real-time based on an orientation of the reference. This entails a simple structure with a reasonable layout, which is easy to use in practice and is particularly helping in dynamic leveling applications without requiring an active control.
    • 7. 发明授权
    • Chip bonding apparatus and bonding method
    • US10658327B1
    • 2020-05-19
    • US16338260
    • 2017-09-26
    • SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    • Tianming WangXiaoyu JiangHai XiaFeibiao Chen
    • H01L23/00
    • Provided are a chip bonding apparatus and bonding method. The apparatus comprises: a chip supply unit (10); a substrate supply unit (20); a first pick-up assembly (30) arranged between the chip supply unit (10) and the substrate supply unit (20), comprising a first rotating component and a first pick-up head arranged on the first rotating component; a second pick-up assembly (40) comprising a second rotating component and a second pick-up head arranged on the second rotating component, wherein the first pick-up assembly (30) picks up a chip (60) from the chip supply unit (10) or the second pick-up assembly (40), and delivers the chip (60) onto a substrate of the substrate supply unit (20) to complete the bonding; and a vision unit (50) for realizing the alignment of the chip (60) and the substrate on the first pick-up assembly (30), wherein the chip supply unit (10), the substrate supply unit (20), the second pick-up assembly (40) and the vision unit (50) are respectively located on four work positions of the first pick-up head. The chip (60) is transported through rotation, improving the productivity of chip (60) bonding; and the chip (60) is reversed by utilizing the second pick-up assembly (40), which is compatible with two ways of bonding, i.e. a mark face of the chip (60) facing upwards and downwards.
    • 9. 发明授权
    • Light intensity modulation method
    • US10416568B2
    • 2019-09-17
    • US16090032
    • 2017-03-30
    • SHANGHAI MICRO ELECTRONICS EQUIPMENT (GROUP) CO., LTD.
    • Pengchuan MaYiqiang Tian
    • G03F7/20
    • A light intensity modulation method implemented by using a mask (101) includes the steps of: 1) based on a circle of confusion (CoC) function of an illumination system (102), an initial light intensity distribution of an illumination field of view (FOV) and a target light intensity distribution of the illumination FOV, calculating a transmittance distribution of the mask (101) used to modulate the initial light intensity distribution into the target light intensity distribution; 2) meshing the mask (101) according to a desired accuracy of the target light intensity distribution and determining a distribution of opaque dots in each of cells resulting from the meshing based on the transmittance distribution of the mask (101) and a desired accuracy of the transmittance distribution; and 3) fabricating the mask (101) based on the determined distribution of the opaque dots and then deploying the mask (101) in the illumination system. Advantages including a high modulation accuracy, an applicability to wide FOV size, light intensity and wavelength ranges and compatibility with established manufacturing processes can be attained.