会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of processing gravity gradient data
    • US09891342B2
    • 2018-02-13
    • US14431156
    • 2013-09-25
    • TECHNOLOGICAL RESOURCES PTY. LIMITED
    • Robert James SmithJohn William Paine
    • G01V7/06G01V7/16
    • G01V7/16G01V7/06
    • The present disclosure provides a method of processing gravity gradient data indicative of an output generated by an airborne gravity gradiometer that is moving along a flight path over a terrain. The method comprises the step of providing the gravity gradient data. The gravity gradient data comprising gravity gradient data elements that are associated with respective flight path segments of the airborne gravity gradiometer. Further, the method comprises providing terrain data indicative of a topography and a density or a density distribution of the terrain above a datum that is below the surface of the terrain over which the airborne gravity gradiometer is moved. The method also comprises providing information concerning the flight path of the airborne gravity gradiometer in three dimensions. In addition, the method comprises calculating the gravity gradient response of the terrain using the provided terrain data and the provided information concerning the flight path. The gravity gradient terrain response data is calculated for a plurality of locations of the gravity gradiometer along at least some of the flight path segment. In addition, the method comprises correcting the gravity gradient data by forming a difference between the calculated gravity gradient terrain response of the terrain topography and the gravity gradient data.
    • 4. 发明申请
    • GRAVITY GRADIOMETER SYSTEM WITH SPHERICAL AIR BEARING BASED PLATFORM
    • 基于空气轴承平台的GRAVITY GRADIOMETER系统
    • US20160363689A1
    • 2016-12-15
    • US14147899
    • 2014-01-06
    • Lockheed Martin Corporation
    • Thomas J. Meyer
    • G01V7/16G01V7/04F16C32/06
    • G01V7/16F16C32/0614F16C32/0696F16C2370/00G01V7/04G01V7/08
    • A non-contacting spherical air bearing-based stable platform for use by a gravity gradiometer instrument (GGI) is provided by attaching a spherical ball-shaped bearing to a rotational stage of the GGI and integrating a concave spherical cup in the linear stage and mounting base assembly of the GGI which is fixedly attached to a host vehicle or platform. The spherical cup supports the spherical ball-shaped bearing on a thin cushion of air provided by a source of compressed air or gas at the concave surface of the spherical cup. The spherical ball-shaped bearing is supported, providing three degrees of rotational freedom of motion without the need for slip rings, flex capsules, races, or mechanical bearings, thereby reducing or eliminating gradient disturbance signals owing to parasitic torques and jitter in the output of the accelerometers of the GGI.
    • 通过将球形球形轴承安装到GGI的旋转台上,并将凹球面杯整合到线性平台中并安装在一起,提供了一种用于重力梯度计(GGI)的非接触球形空气轴承的稳定平台 GGI的基座组件固定地连接到主车辆或平台。 球形杯将球形轴承支撑在由球形杯的凹面处的压缩空气源或气体提供的薄的空气缓冲垫上。 支撑球形球形轴承,提供三度的旋转运动自由度,而不需要滑环,柔性胶囊,座圈或机械轴承,从而减少或消除由于寄生扭矩和输出中的抖动引起的梯度扰动信号 GGI的加速度计。
    • 5. 发明申请
    • SYSTEM AND METHOD FOR GRAVIMETRY WITHOUT USE OF AN INERTIAL REFERENCE
    • 没有使用惯性参考的GRAVIMETRY的系统和方法
    • US20160041300A1
    • 2016-02-11
    • US14454468
    • 2014-08-07
    • Lockheed Martin Corporation
    • Thomas J. Meyer
    • G01V7/02
    • G01V7/02G01V7/16
    • A gravimeter for measuring the gravitational field of the Earth without an inertial reference comprises accelerometer pairs disposed on a platform where the sensitive axis of each accelerometer is arranged on the platform to measure plumb gravity. At least one accelerometer pair is spatially configured to define a baseline therebetween. The gravimeter is positioned so that the baseline is maintained parallel to a linear survey path. Each accelerometer outputs a signal representative of the sum total of the accelerations detected, including accelerations due to gravity and kinematic accelerations of the host vehicle and mounting structure. A processor subtracts the accelerometer pair outputs for common-mode rejection determination of a down gravity gradient and combines with a direct plumb gravity measurement to obtain an enhanced gravity data output that is not subject to frequency limits attributed to the performance limitations of inertial reference devices.
    • 用于测量没有惯性参考的地球的重力场的重力仪包括设置在平台上的加速度计对,其中每个加速度计的灵敏轴被布置在平台上以测量铅垂重力。 至少一个加速度计对在空间上被配置为在其间限定基线。 重力仪被定位成使得基线保持平行于线性测量路径。 每个加速度计输出表示所检测的加速度的总和的信号,包括由于主车辆和安装结构的重力和运动学加速度引起的加速度。 一个处理器减去加速度计对输出,用于下行重力梯度的共模抑制确定,并与直接铅锤重力测量相结合,以获得不受惯性参考装置性能限制的频率限制的增强重力数据输出。
    • 7. 发明申请
    • Gravity Measurements By Towed Streamers
    • 重力测量由拖缆
    • US20140269180A1
    • 2014-09-18
    • US13797435
    • 2013-03-12
    • PGS GEOPHYSICAL AS
    • Rune TenghamnEinar Nielson
    • G01V7/16G01V1/38
    • G01V7/16G01V1/38G01V11/00G01V2210/61
    • Techniques are described for measuring gravity using towed streamers. In an embodiment, a towed streamer apparatus comprises a plurality of micro electro-mechanical system (MEMS) sensors. One or more MEMS sensors of the plurality of MEMS sensors are configured to generate gravity measurement data. The one or more MEMS sensors transmit a digitized version of the gravity measurement data to a processing unit. In another embodiment, an apparatus is configured to receive gravity measurement data via an interface that is communicatively coupled to a plurality of MEMS sensors in at least one towed streamer. The apparatus may further be configured to combine the gravity measurement data received from the plurality of MEMS sensors to compute a target gravity measurement value and detect changes in gravity based on the target gravity measurement value.
    • 描述了使用牵引拖缆测量重力的技术。 在一个实施例中,牵引的流光装置包括多个微机电系统(MEMS)传感器。 多个MEMS传感器中的一个或多个MEMS传感器配置成产生重力测量数据。 一个或多个MEMS传感器将重力测量数据的数字化版本发送到处理单元。 在另一个实施例中,一种装置被配置为经由通信地耦合到至少一个牵引拖缆中的多个MEMS传感器的接口来接收重力测量数据。 该装置还可以被配置为组合从多个MEMS传感器接收的重力测量数据,以计算目标重力测量值,并基于目标重力测量值检测重力变化。
    • 8. 发明申请
    • Gravity Gradiometer
    • 重力Gradiometer
    • US20140000362A1
    • 2014-01-02
    • US13539988
    • 2012-07-02
    • Marcello M. DiStasioIon V. Nicolaescu
    • Marcello M. DiStasioIon V. Nicolaescu
    • G01V7/00
    • G01V7/00G01V7/16
    • A gravity gradiometer having at least three differential accelerometers with a low response to linear accelerations and at least six angular accelerometers that give it the capability of measuring angular rates by integrating the angular accelerations. Both types of accelerometers are based on a compliant mechanism with very low and adjustable stiffness that is achieved by using flexures under compressive load that contribute a negative stiffness to the total elastic response of the mechanism. Both types of accelerometers are operated in a servo-compensation feedback mode so that at no time is the mechanism far from its equilibrium position.
    • 具有至少三个差分加速度计的重力梯度计具有对线性加速度的低响应和至少六个角加速度计,其赋予其通过积分角加速度来测量角速率的能力。 两种类型的加速度计基于具有非常低和可调节的刚度的柔性机构,其通过在压缩载荷下使用弯曲而实现,其对机构的总弹性响应贡献负刚度。 两种类型的加速度计在伺服补偿反馈模式下运行,使得机构在任何时候都远离其平衡位置。
    • 9. 发明授权
    • Geophysical data processing systems
    • 地球物理数据处理系统
    • US08473264B2
    • 2013-06-25
    • US12863754
    • 2008-01-21
    • Gary James BarnesJohn Morris LumleyMark DaviesJoseph Jean Barraud
    • Gary James BarnesJohn Morris LumleyMark DaviesJoseph Jean Barraud
    • G06F17/10
    • G01V7/16
    • A method of processing geophysical data including at least measured potential field data from a potential field survey of a surveyed region of the earth to provide a representation of the geology of said surveyed region, the method comprising generating a first model of said surveyed region by fitting data predicted by said first model to said measured data for a specified frequency range; predicting full range potential field data for all measured frequencies using said generated first model; comparing said full range predicted data to said measured potential field data to provide full range residual data representing a difference between the full range predicted data and the full range measured data, and interpreting said full range residual data to provide a representation of said geology of said surveyed region.
    • 一种处理地球物理数据的方法,所述方法包括至少测量的来自地球测量区域的潜在现场勘测的势场数据,以提供所述被测区域的地质的表示,所述方法包括通过拟合来生成所述被测区域的第一模型 由所述第一模型预测的数据对于指定频率范围的所述测量数据; 使用所述生成的第一模型预测所有测量频率的全范围电势场数据; 将所述全范围预测数据与所述测量的电位场数据进行比较,以提供表示全范围预测数据与全范围测量数据之间的差异的全范围残差数据,以及解释所述全范围残差数据以提供所述全范围预测数据的所述地质学 受访地区。