会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • PREDICTING PHARMACOKINETIC AND PHARMACODYNAMIC RESPONSES
    • 预测药物动力学和药物动力学反应
    • US20170032066A1
    • 2017-02-02
    • US15254514
    • 2016-09-01
    • Arrapoi, Inc.
    • GLENN A. WILLIAMS
    • G06F17/50G06N5/02G06F17/17
    • G06F17/5009G06F17/17G06F19/12G06F19/704G06F2217/16G06N5/02
    • Non-mechanistic, differential-equation-free approaches for predicting a particular pharmacokinetic and pharmacodynamic responses of a system to a given input are provided in the form of systems, methods, and devices. These approaches are generally directed to a non-compartmental method of predicting a time-dependent pharmacokinetic response, or pharmacodynamics response, of a component of a system to an input into the system. The systems, methods, and devices provide the ability to (i) reduce the cost of research and development by offering an accurate modeling of heterogeneous and complex physical systems; (ii) reduce the cost of creating such systems and methods by simplifying the modeling process; (iii) accurately capture and model inherent nonlinearities in cases where sufficient knowledge does not exist to a priori build a model and its parameters; and, (iv) provide one-to-one relationships between model parameters and model outputs, addressing the problem of the ambiguities inherent in the current, state-of-the-art systems and methods.
    • 以系统,方法和设备的形式提供用于预测系统对给定输入的特定药代动力学和药效学响应的非机械,微分方程式方法。 这些方法通常涉及将系统的组件的时间依赖性药代动力学反应或药效学响应预测为系统的输入的非隔室方法。 系统,方法和设备提供(i)通过提供异构和复杂物理系统的精确建模来降低研发成本的能力; (ii)通过简化建模过程降低创建此类系统和方法的成本; (iii)在先验构建模型及其参数的情况下,不存在足够的知识的情况下,准确地捕获和模拟固有的非线性; 和(iv)在模型参数和模型输出之间提供一对一的关系,解决当前,最先进的系统和方法中固有的模糊性问题。
    • 8. 发明授权
    • Methods, systems and computer program products for chemical hazard evaluation
    • 用于化学危害评估的方法,系统和计算机程序产品
    • US09424517B2
    • 2016-08-23
    • US14048188
    • 2013-10-08
    • Daniel J. DaultonJo Ann McMahonWilliam J. KucCharles Lee Ake, Jr.Denise HillThomas Grumbles
    • Daniel J. DaultonJo Ann McMahonWilliam J. KucCharles Lee Ake, Jr.Denise HillThomas Grumbles
    • G06F17/00G06N5/02G06N5/04G06Q10/10G06Q50/26
    • G06F19/704G06N5/04G06Q10/10G06Q50/26
    • A method of assessing chemical products includes: receiving input data including identification of a chemical substance at a processing device; evaluating a regulatory impact of the chemical substance based on at least one of global regulation data, regional regulation data and jurisdiction-specific regulation data, and outputting a regulatory impact assessment; evaluating potential hazards posed by the chemical substance based on available data related to characteristics of the chemical substance by comparing the characteristics to a plurality of criteria including environmental criteria, toxicity criteria related to effects on human health, and physical criteria related to hazards encountered during material transportation and handling, and outputting a chemical hazard assessment; and generating a chemical assessment report indicating potential impact due to use of the chemical substance, the chemical assessment report indicating chemical assessment results that include the regulatory impact assessment and the chemical hazard assessment.
    • 一种评估化学产品的方法包括:接收包括在处理装置上的化学物质鉴定的输入数据; 根据全球监管数据,区域监管数据和管辖范围监管数据中的至少一个,评估化学物质的监管影响,并输出监管影响评估; 根据与化学物质特征相关的现有数据,将特征与包括环境标准在内的多个标准,与对人体健康有关的毒性标准以及与材料中遇到的危害有关的物理标准进行比较,评估化学物质构成的潜在危害 运输和处理,并输出化学危害评估; 并发出化学品评估报告,说明使用化学物质的潜在影响,化学品评估报告,其中包括监管影响评估和化学危害评估的化学评估结果。
    • 10. 发明申请
    • GENERATING INVISCID AND VISCOUS FLUID-FLOW SIMULATIONS OVER AN AIRCRAFT SURFACE USING A FLUID-FLOW MESH
    • 使用流体流网络在飞机表面生成隐形和粘性流体流动模拟
    • US20150370933A1
    • 2015-12-24
    • US14583070
    • 2014-12-24
    • Aerion Corporation
    • David L. RODRIGUEZPeter STURDZA
    • G06F17/50G06F17/18
    • G06F17/5009G06F17/18G06F17/5018G06F17/5095G06F19/704G06F2217/16G06F2217/46Y02T90/50
    • Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
    • 在计算机生成的飞行器表面上的流体流动模拟是使用粘性和粘性模拟产生的。 获得流体细胞的流体流动网。 使用不模拟流体粘性效应的非粘性流体模拟来确定流体池的至少一个不粘性流体性质。 识别与飞行器表面相交的一组相交的流体单元。 为每个相交的流体池识别表面网格的一个表面网格多边形。 确定每个确定的表面网格多边形的边界层预测点。 使用相应的交叉流体池的至少一个非粘性流体性质和模拟流体粘性效应的边界层模拟来确定每个边界层预测点的至少一个边界层流体性质。 使用至少一个边界层流体性质和非粘性流体模拟来确定用于至少一个流体池的至少一个更新的流体性质。