会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • RAPID MERCURY-FREE PHOTOCHEMICAL MICROENCAPSULATION/NANOENCAPSULATION AT AMBIENT CONDITIONS
    • US20220288632A1
    • 2022-09-15
    • US17714874
    • 2022-04-06
    • COLLEGE OF THE NORTH ATLANTIC IN QATAR
    • Jamal KURDIMohammed FARID
    • B05D3/06B01J13/16A61K9/50F26B3/28
    • A method of mercury-free photochemical micro-/nano-encapsulation of an active material is a process for obtaining Micro-/nano-capsules by means of curing by UV LED radiation at ambient or even cold temperatures. A stirrer photo-reactor made from glass or transparent plastics can be used but mixed flow reactor could be also employed. Appropriate mixing is sufficient to expose all droplets, which contain an active material surrounded by curable-shell materials in the emulsion to the LED radiation. Using the optimum light intensities and reactions' times is critical for encapsulating the active material with a high efficiency and producing a high quality micro-/nano-capsules, Solar monochromator device can also be used as long as it generate the same radiation with a narrow/single wavelengths as the LED device. Light emitted diode (LED) is a mercury-free UV radiation source with a long operating life time and an instant ON-Off, it has a high efficiency, a very low cooling requirements and cost-efficient in photochemical encapsulation. It reduces the time of microencapsulation from 6 hours to a less than 5 minutes. It has a significant decrease in manufacturing cost, waste-water, unconverted monomers, and leftover active phase change material (PCM) compared to other methods. Conversion of more than 90% of monomers can be achieved, and encapsulation efficiency can reach 100% at optimum conditions. This is in addition to the ability of this invented technology for encapsulate volatile and heat sensitive active materials at ambient as well as low temperatures. Normal glass or transparent plastics can be used as a reactor material. Only the matched useful wavelength radiation is emitted by LED without having other wavelengths which might have a bad impact on the encapsulation process.