会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Robot with control system for discrete manual input of positions and/or poses
    • US10994415B2
    • 2021-05-04
    • US15773630
    • 2016-10-25
    • FRANKA EMIKA GmbH
    • Sami Haddadin
    • B25J9/16G05B19/423
    • The invention relates to a robot, a robot control system, and a method for controlling a robot. The robot comprises a movable, multi-membered robot structure (102) that can be driven by means of actuators (101), at least one marked structural element S being defined on the movable robot structure (102), with at least one point PS marked on the structural element S. The robot is designed such that, in an input mode, it learns positions POSPS of the point PS and/or poses of the structural element S in a work space of the robot, the user exerting an input force FEING on the movable robot structure in order to move the structural element S, which is conveyed to the point PS as FEING,PS, and/or to the structural element S as torque MEING,S. A control device (103) of the robot is designed such that, in the input mode, the actuators (101) are controlled on the basis of a pre-defined space-fixed virtual 3D grid that at least partially fills the work space, such that the structural element S is moved with a pre-defined force FGRID (POSPS), according to the current position POSPS of the point PS in the 3D grid, to the adjacent grid point of the 3D grid or in a grid point space defined around the adjacent grid point of the 3D grid, the point PS of the structural element S remaining on said adjacent grid point or in said grid point space in the event of the following holding true: |FEING,PS|
    • 10. 发明申请
    • ROBOT WITH CONTROL SYSTEM FOR DISCRETE MANUAL INPUT OF POSITIONS AND/OR POSES
    • US20190061148A1
    • 2019-02-28
    • US15773630
    • 2016-10-25
    • FRANKA EMIKA GmbH
    • Sami HADDADIN
    • B25J9/16G05B19/423
    • The invention relates to a robot, a robot control system, and a method for controlling a robot. The robot comprises a movable, multi-membered robot structure (102) that can be driven by means of actuators (101), at least one marked structural element S being defined on the movable robot structure (102), with at least one point PS marked on the structural element S. The robot is designed such that, in an input mode, it learns positions POSPS of the point PS and/or poses of the structural element S in a work space of the robot, the user exerting an input force FEING on the movable robot structure in order to move the structural element S, which is conveyed to the point PS as FEING,PS, and/or to the structural element S as torque MEING,S. A control device (103) of the robot is designed such that, in the input mode, the actuators (101) are controlled on the basis of a pre-defined space-fixed virtual 3D grid that at least partially fills the work space, such that the structural element S is moved with a pre-defined force FGRID (POSPS), according to the current position POSPS of the point PS in the 3D grid, to the adjacent grid point of the 3D grid or in a grid point space defined around the adjacent grid point of the 3D grid, the point PS of the structural element S remaining on said adjacent grid point or in said grid point space in the event of the following holding true: |FEING,PS|