会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method and ion guide assembly for modulating a stream of ions
    • US11605532B2
    • 2023-03-14
    • US17332810
    • 2021-05-27
    • TOFWERK AG
    • Stephan GrafMichael KamrathSebastian Gerber
    • H01J49/00H01J49/06H01J49/02G01N27/622
    • The invention relates to a method for, in an ion guide (10), modulating a stream of ions according to a modulation function, wherein the stream of ions includes at least N different ion species, wherein N is at least 1. This ion guide (10) forms an ion guide path, wherein the ions of the stream of ions are conveyed along the ion guide path in a conveying direction to form the stream of ions. The ion guide (10) includes an ion gate (12) arranged at an ion gate position on the ion guide path, wherein the ion gate (12) is adapted to provide an open state for allowing the ions passing the ion gate position when being conveyed along the ion guide path and a closed state for preventing the ions from passing the ion gate position. The ion guide (10) further includes a first arrangement (13) of conveying electrodes (230) arranged along the ion guide path, the first arrangement (13) of conveying electrodes (230) extending over a first section of the ion guide path, wherein the first section of the ion guide path reaches from at least the ion gate position downstream to at least a transition position on the ion guide path, wherein the first arrangement (13) of conveying electrodes (230) is adapted for generating first travelling waves having a first travelling wave amplitude and travelling along the first section of the ion guide path at a first travelling wave velocity for conveying the ions along the first section of the ion guide path. Furthermore, the ion guide (10) includes a second arrangement (14) of conveying electrodes (240) arranged along the ion guide path, the second arrangement (14) of conveying electrodes (240) extending over a second section of the ion guide path, wherein the second section of the ion guide path reaches from the transition position downstream, wherein the second arrangement (14) of conveying electrodes (240) is adapted for generating second travelling waves having a second travelling wave amplitude and travelling along the second section of the ion guide path at a second travelling wave velocity for conveying the ions along the second section of the ion guide path. According to the method, the stream of ions is modulated with the ion gate (12) according to the modulation function and AC voltages are applied to the first arrangement (13) of conveying electrodes (230) for generating the first travelling waves and to the second arrangement (14) of conveying electrodes (240) for generating the second travelling waves for conveying the ions downstream of the ion gate (12) along the first section and the second section of the ion guide path in the conveying direction away from the ion gate (12), wherein for each ion species of the at least N different ion species, a ratio A is the average velocity of the ions of the respective ion species in the first section of the ion guide path divided by the first travelling wave velocity, wherein for each ion species of the at least N different ion species, a ratio B is the average velocity of the ions of the respective ion species in the second section of the ion guide path divided by the second travelling wave velocity, wherein the first travelling wave amplitude, the first travelling wave velocity, the second travelling wave amplitude and the second travelling wave velocity are chosen such that for each ion species of the at least N different ion species, the ratio A is larger than the ratio B.
    • 9. 发明授权
    • Ion entry/exit device
    • US11527395B2
    • 2022-12-13
    • US17130636
    • 2020-12-22
    • Micromass UK Limited
    • Kevin GilesDavid J. LangridgeJason Lee Wildgoose
    • H01J49/06G01N27/622H01J49/42H01J49/00H01J49/40
    • A method of introducing and ejecting ions from an ion entry/exit device (4) is disclosed. The ion entry/exit device (4) has at least two arrays of electrodes (20,22). The device is operated in a first mode wherein DC potentials are successively applied to successive electrodes of at least one of the electrode arrays ((20,22) in a first direction such that a potential barrier moves along the at least one array in the first direction and drives ions into and/or out of the device in the first direction. The device is also operated in a second mode, wherein DC potentials are successively applied to successive electrodes of at least one of the electrode arrays (20,22) in a second, different direction such that a potential barrier moves along the array in the second direction and drives ions into and/or out of the device in the second direction. The device provides a single, relatively simple device for manipulating ions in multiple directions. For example, the device may be used to load ions into or eject ions from an ion mobility separator in a first direction, and may then be used to cause ions to move through the ion mobility separator in the second direction so as to cause the ions to separate.