会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 地球同步卫星 / 专利数据
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 一种适用于小型船舶的卫星通信系统 CN201610117486.6 2016-03-02 CN105721042A 2016-06-29 裴军; 艾国祥; 吕昌; 胡正群; 庞峰; 张丽荣
本发明提供了一种适用于小型船舶的卫星通信系统,包括:船载天线、伺服控制单元、射频单元和卫星路由器单元,所述射频单元与船载天线通过低损耗射频馈线连接;其中,所述船载天线用于收发地球同步轨道通信卫星(GEO)或小倾角地球同步轨道通信卫星(SIGSO)卫星L波段通信信号;所述伺服控制单元用于调整天线方位角、俯仰角及极化角,用于使船体在变化过程中天线实时跟踪地球同步卫星;射频单元,用于将发射频信号进行变频和信号放大处理;所述卫星路由器单元,用于调制射频信号。利用现有GEO和IGSO卫星系统,实现通过卫星移动报文数据通信的目的。与现有技术相比,有效解决了通信设备体制众多,功能单一、设备兼容性差和信息资源共享差等问题。
162 一种基于微分代数的地球同步轨道确定和参数确定方法 CN201810827230.3 2018-07-25 CN109032176B 2021-06-22 袁建平; 陈建林; 代洪华; 孙冲; 崔尧
本发明公开了一种基于微分代数的地球同步轨道确定和参数确定方法,选用基于地球同步卫星轨道要素描述的动力学模型,避免了在数值积分过程中使用较大的积分步长且避免动力学模型出现奇异点,并在动力学模型中加入摄动力项,进行多项式形式的积分,得到轨道状态和航天器参数,对得到的参数进行高阶预测,同时进行观测量的高阶预测;利用动力学模型和观测模型的非线性信息,提高估计精度,结合航天器的真实观测值,对轨道状态和航天器参数的高阶预测值进行更新并得到作为初值的高阶估计值,重复上面的实施过程,即可完成地球同步轨道确定和参数确定。本发明不仅可以提高轨道估计的精度,实现参数的高精度估计,还能大幅度降低计算的成本。
163 一种广播电视无线网络与宽带移动通信网络融合网络的分布式业务测试方法及系统 CN201610392173.1 2016-06-03 CN107465581A 2017-12-12 房卫东; 李强; 赵鲁阳; 张质懿; 何为
一种广播电视无线网络与宽带移动通信网络融合网络的分布式业务测试方法及系统,包括服务器端及客户端;服务器端通信连接有第一测试设备,客户端通信连接有第二测试设备,包括:第一测试设备发起服务器端测试请求;第二测试设备接收到测试请求,与第一测试设备建立物理链路连接;第一测试设备与地球同步卫星进行时间同步,通过物理链路发送测试数据包;第二测试设备接收测试数据包并应答,与第一测试设备进行测试通信连接;第一测试设备构建模拟业务数据包;第一测试设备广播发送模拟业务数据包;第一测试设备记录第二测试设备接收业务数据包后发来的地理位置信息和固定时延;第一测试设备根据地理位置信息和固定时延,获取网络性能信息和盲点信息。
164 抛物面天线的变频装置 CN99800589.4 1999-04-19 CN1157822C 2004-07-14 卡马尔·洛特菲
一种抛物面天线变频装置,所述天线接收由两个彼此相距不远的地球同步卫星发射的垂直和水平线性偏振信号,这种变频装置包括两个用于接收来自一个卫星的信号的变频器,每个变频器包括一个输入部分、一个输出部分和由所述输出部分支承的天线元件,每个变频器具有确保天线元件在接收信号面上进行定向的装置,以及通过转动变频器的支承件与两个卫星的不同仰角相匹配的适配器,其特征在于,两个变频器的输出部分制成一个整体件,而其输入部分是分开的,并且可选择定向地安装在整体件上,这种变频装置围绕一条与两个输入部分相平行的轴线转动地加以安装;每个输入部分包括一个波导元件,该波导元件安装在一个同整体件相连的输出波导元件上,与所述输出波导元件轴向对齐,并且相对输出波导元件可进行角位移。
165 卫星通讯天线极轴式四连杆转向机座 CN93236764.X 1993-05-03 CN2172529Y 1994-07-20 马文明; 曹薇
一种卫星通讯天线极轴式四连杆转向机座,利用四连杆变形原理,至少利用二个以上的四连杆的框架设计而成,框架的上底面为抛物线支承面,下底面为固定底座,四连杆上底面相对于下底面可作相反方向的位移,四连杆框架内设置三角形驱动叉,驱动叉可在电机驱动下作移动,从而使四连杆变形,使抛物面天线作大角度的旋转,扫描地球同步卫星轨道上的多颗卫星,不但使换星操作简单,还补偿了因天线转动所造成的重心偏移变化。
166 KU频段卫星接收高频头 CN01235503.8 2001-04-16 CN2503672Y 2002-07-31 陈修玄
Ku频段卫星接收高频头,由馈源和高频头电路组件构成,高频头电路组件由低噪声宽带放大器、镜象抑制带通滤波器、双本机振荡器、环形功率分配器、平衡混频器、中频放大器、三端稳压器和控制电路组成。本实用新型提供的Ku频段高频头是一种双极性、双本振(9.75GHz和10.6GHz)的高频头,它与抛物面天线和卫星电视接收机组合在一起,构成卫星电视地球接收站,可以直接接收地球同步卫星Ku频段转发器发出的模拟或数字电视信号。该高频头采用了当今最新型的超低噪声,高增益场效应晶体和高频头专用本机振荡,平衡混频,中频放大,晶体偏置和控制集成电路,因此,该种高频头功率增益高、噪声低、相位噪声指标好、可靠性高。
167 多功能KU频段卫星接收高频头和相应接收装置 CN200820204726.7 2008-12-05 CN201328153Y 2009-10-14 洪聪进
本实用新型涉及一种多功能KU频段卫星接收高频头和相应的接收装置。现有高频头不能接收低频广播电视信号。为此,本多功能KU频段卫星接收高频头,包括馈源、高频头电路组件。其还包括室外广播电视天线信号输入端,中频放大器与高频头输出端之间设有950-2150MHz的高通滤波器,室外广播电视天线信号输入端通过47-862MHz的低通滤波器与高频头输出端相接。本实用新型还涉及一种相应的接收装置,包括前述多功能KU频段卫星信号接收高频头和分波器。使用本多功能KU频段卫星接收高频头,可以直接接收地球同步卫星KU频段转发器发出的模拟或数字电视信号,如果供给广播电视信号,还可以用来观看普通的有线电视节目。
168 一种卫星通讯天线 CN201420634480.2 2014-10-23 CN204216225U 2015-03-18 李五一
本实用新型公开了一种卫星通讯天线,主要包括固定支架、过渡架、托盘、丝杆、标准抛物面、偏馈反射面和高频头,所述的固定支架包括立柱、固定基板和支撑杆,固定基板与承载物体连接,固定基板上面中心有立柱,立柱四周有支撑杆,所述的偏馈反射面嵌在标准抛物面上端,偏馈反射面通过过渡架连接在立柱的顶端,丝杆一端与偏馈反射面连接,另一端与过渡架连接,所述的丝杆带有步进电机,丝杆的转动调节偏馈反射面和标准反射面的仰角;所述的过度架通过步进电机可以以立柱为中心转动,调整卫星通讯天线的方位角。有益效果是:与控制系统配套,可以实现与单颗和多颗卫星通信,实现天线始终实时跟踪地球同步卫星,达到在船上可以收看卫星电视,减低海上通话费用,可以应用海上SOS急救通讯。
169 Method and apparatus for efficient acquisition and tracking of satellites US89895 1998-06-03 US6078286A 2000-06-20 Estevan Marcial Gonzales; Richard Alan Bienz
A method and apparatus for efficiently tracking satellites includes a geosynchronous satellite (10) for transmitting the ephemeris of non-geosynchronous satellites (20, 30) to a ground terminal (50). The ephemeris is computed by the non-geosynchronous satellites (20, 30) or by other means such as a ground station (60). A ground terminal (50) can quickly acquire a non-geosynchronous satellite (20, 30) by receiving fresh ephemeris data from a geosynchronous satellite (10), determining a location of a non-geosynchronous satellite (20, 30), and orienting an antenna.
170 지구 동기 위성을 이용한 범 지구 위성 항법 시스템 KR1020100132901 2010-12-22 KR1020120071238A 2012-07-02 이병선; 황유라; 김재훈
PURPOSE: A universal terrestrial global positioning system using groups of geosynchronous satellites is provided to recognize an accurate position using a less number of satellites. CONSTITUTION: Satellite groups(101-112) comprises one or more geosynchronous satellites arranged on one or more orbital planes which are defined at regular intervals based on the longitude of the earth. The geosynchronous satellites revolve around the earth according to the predetermined inclination of satellite orbit and provide geographical shape variation data according to time on the earth, low orbit satellites, and stationary satellites.
171 Multiple altitude satellite relay system and method EP96114891.3 1996-09-17 EP0767547A2 1997-04-09 Williams, Brian R.; Cress, Peter H.

A multiple altitude satellite relay system is disclosed in which Medium Earth Orbit satellites are continuously linked with at least one Geosynchronous satellite to provide uninterrupted relaying of messages and data. The Medium Earth Orbit satellites are synchronized with the Geosynchronous satellites to produce continuous links. A parameter to achieve the synchronization involves the positions of the Medium Earth Orbit satellite relays relative to the positions of the Geosynchronous satellite relays. Another parameter to achieve synchronization involves the ratio between the orbital periods of the Geosynchronous satellite relays relative to the orbital periods of the Medium Earth Orbit satellite relays. These parameters may be further adjusted to provide continuous links above the horizon of the earth.

172 Multiple altitude satellite relay system and method US694466 1995-10-03 US5906337A 1999-05-25 Brian R. Williams; Peter H. Cress
A multiple altitude satellite relay system is disclosed in which Medium Earth Orbit satellites are continuously linked with at least one Geosynchronous satellite to provide uninterrupted relaying of messages and data. The Medium Earth Orbit satellites are synchronized with the Geosynchronous satellites to produce continuous links. A parameter to achieve the synchronization involves the positions of the Medium Earth Orbit satellite relays relative to the positions of the Geosynchronous satellite relays. Another parameter to achieve synchronization involves the ratio between the orbital periods of the Geosynchronous satellite relays relative to the orbital periods of the Medium Earth Orbit satellite relays. These parameters may be further adjusted to provide continuous links above the horizon of the earth.
173 Net kinetic energy differential guidance and propulsion system for satellites and space vehicles US854346 1992-03-19 US5377936A 1995-01-03 Maurice Mitchell
Apparatus and methods of Gravity Guidance and Propulsion of Geosynchronous Satellites, other satellites and space vehicles using net kinetic energy PUSH of Gravity of the electromagnetic spectrum particles which continually irradiate the earth from space, based on the Oppositely Charged Twin Monopole (OCTM) Theory of Matter. Specifically Fully Stabilized Geosynchronous Satellites can be made with the same lift-off weight as Spin Stabilized Geosynchronous Satellites by using GG&P Methods and Rules of mass distribution in the satellite.
174 MULTI-TIER SATELLITE SYSTEM AND METHOD OF OPERATION PCT/US1998/010830 1998-05-28 WO98057447A1 1998-12-17
A system for increasing call-handling capacity employs a multi-tier satellite network which includes one or more geosynchronous (GEO) satellites (12) and non-geosynchronous satellites (14). The GEO satellites (12) transfer non delay-sensitive data through the system, while the non-geosynchronous satellites (14) predominantly transfer delay-sensitive data through the system. In a preferred embodiment, a non-geosynchronous satellite (14) receives (102) a data packet, determines (112) whether or not the data packet is delay-sensitive, routes (114) a delay-sensitive data packet through the LEO network, and routes (116) a non delay-sensitive data packet to a GEO satellite (12).
175 多高度衛星中繼系統及方法 TW086117982 1997-11-27 TW357499B 1999-05-01 布萊恩.威廉斯; 彼德.克里斯
發表一種多高度衛星中繼系統,其中,中地球軌道衛星至少與一地球同步衛星連續鏈結,用以提供不中斷之信息與資料之中繼。中地球軌道衛星與地球同步衛星同步用以產生連續鏈結。完成同步之一參數牽扯到相對於地球同步衛星中繼站位置之中地球軌道衛星中繼站位置。完成同步之另一參數牽扯到相對於中地球軌道衛星中繼站軌道週期之地球同步衛星中繼站軌道週期間之比率。可進一步調整這些參數加以提供位於地平線上之連續鏈結。發表一額外之衛星中繼系統,其中,高軌道衛星不需在地球同步軌道中且一高軌道衛星在一連續不斷裂之鏈結上與一低軌道衛星加以聯絡。發表進一步之衛星中繼系統,其中,在分離之軌道高度處理佈置兩個以上之衛星,在衛星之間再一次提供一連續,不斷裂之菊鏈式鏈結。
176 Eccentricity vector control with continuous or quasi-continuous maneuvers US12930679 2011-01-13 US20120181386A1 2012-07-19 Vaclav Majer
A method of managing an eccentricity vector of a geosynchronous satellite orbit is provided. The method includes determining a desired target locus of an acquisition control of a satellite in a geosynchronous orbit, where the acquisition control ensures that an osculating trajectory of the satellite converges in mean to the target locus. Further, the method includes determining a solar pressure perturbation to the geosynchronous satellite orbit, honoring a hard eccentricity limit constraint of the satellite orbit using an ideal continuously controlled osculating trajectory, and controlling the eccentricity vector of the geosynchronous satellite orbit using a quasi-continuous control or a continuous control to mitigate or eliminate an annual solar pressure perturbation, where the quasi-continuous control or the continuous control maintains the satellite orbit within the hard limit osculating constraint and converges the eccentricity of the satellite orbit toward the ideal continuously controlled osculating trajectory of the geosynchronous satellite orbit.
177 Geosynchronous satellite communication system and method US08657846 1996-05-31 US06226493B1 2001-05-01 Raymond Joseph Leopold; Dennis Paul Diekelman
A geosynchronous satellite system (10) uses crosslinks (30) between geosynchronous satellites (16) which travel along the same ground path (18) or are located within a common orbital slot (32) in order to increase traffic-carrying capacity and decrease signal delays. The geosynchronous satellites (16) can have substantial angles of inclination to provide high quality coverage within a wide range of latitudes (40, 42). In addition, the orbits can be elliptical, resulting in concentrated network capacity in either the northern or southern hemisphere. For co-positioned satellites (171-174), orbit perturbations are introduced in order to eliminate crosslink blockage caused by intervening satellites (172, 173). Methods for deploying and operating the geosynchronous satellite system enable network capacity to be modified (708) and routing (804), crosslinks (1008), and handoffs (908) to be controlled.
178 Method for automatically positioning a satellite dish antenna to satellites in a geosynchronous belt US510991 1995-08-03 US5585804A 1996-12-17 Charles E. Rodeffer
A TVRO satellite dish antenna system mounted on the roof of a parked vehicle automatically determines its location and bearing relative to two geosynchronous satellites and then uses this information to accurately calculate the azimuths and elevations of any other geosynchronous satellites. A magnetic compass generates a magnetic bearing signal for the system. An estimated latitude and longitude for the vehicle are provide by the user based on the approximate geographic location of the vehicle. The estimated positions for a first geosynchronous satellite and a second geosynchronous satellite relative to the satellite dish antenna are calculated from this information. The satellite dish antenna is moved to an initial search position corresponding to the estimated position of the first satellite and then moved in a search pattern until the receiver detects a signal peak for a selected channel. The actual azimuth and elevation of the first satellite are calculated based on the position of the satellite dish antenna upon detecting the signal peak. These steps are repeated for the second satellite. Revised bearing, latitude, and longitude coordinates for the satellite dish antenna are calculated based on the actual azimuths and elevations of the first and second satellites. Finally, the azimuth and elevation of any remaining geosynchronous satellite can be calculated based on the revised bearing, latitude, and longitude coordinates for the satellite dish antenna.
179 INDOOR SATELLITE COMMUNICATION US14922234 2015-10-26 US20160126625A1 2016-05-05 Aaron Gurewitz
A system for obstructed satellite communication that comprises an outdoor satellite antenna adapted to receive and transmit an electromagnetic satellite signal at a radiation frequency with a geosynchronous satellite, wherein the outdoor satellite antenna is directed towards the geosynchronous satellite along a line of sight, at least one directional antenna adapted to receive and transmit an obstructed electromagnetic signal at same the radiation frequency, wherein each of the at least one directional antenna comprises a feedhorn that is parallel to the line of sight and opposite in direction from the geosynchronous satellite and wherein the at least one directional antenna is adapted to be mounted on a far side of a physical obstruction away from the geosynchronous satellite, and a relay amplifier device adapted to send and receive the electromagnetic satellite signal and the obstructed electromagnetic signal between respective the outdoor satellite antenna and the at least one directional antenna.
180 Multiple altitude satellite relay system and method EP97120861.6 1997-11-27 EP0845876A2 1998-06-03 Williams, Brian R.; Cress, Peter H.

A multiple altitude satellite relay system is disclosed in which Medium Earth Orbit satellites are continuously linked with at least one geosynchronous satellite to provide uninterrupted relaying of messages and data. The Medium Earth Orbit satellites are synchronized with the geosynchronous satellites to produce continuous links. A parameter to achieve the synchronization involves the positions of the Medium Earth Orbit satellite relays relative to the positions of the geosynchronous satellite relays. Another parameter to achieve synchronization involves the ratio between the orbital periods of the geosynchronous satellite relays relative to the orbital periods of the Medium Earth Orbit satellite relays. These parameters may be further adjusted to provide continuous links above the horizon of the earth. An additional satellite relay system is disclosed in which the high-orbit satellite need not be in geosynchronous orbit and in which a high-orbit satellite communicates over a continuous unbroken link with a low-orbit satellite. A further satellite relay system is disclosed in which more than two satellites are arranged at discrete orbit altitudes, again providing a continuous, unbroken daisy-chain link between satellites.