会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 10. 发明申请
    • Double phase encoding quantum key distribution
    • 双相编码量子密钥分配
    • US20070076887A1
    • 2007-04-05
    • US11241164
    • 2005-09-30
    • Randy KuangGuo WangJohn Stankus
    • Randy KuangGuo WangJohn Stankus
    • H04L9/00
    • H04L9/0858
    • A laser pulse representing a bit of a quantum key is split into two pulses. In addition to known round trip phase encoding schema, a secret phase key is modulated into one of the two pulses: P1 and P2. The secret phase key is used to identify whether the returning pulses originated from the sender, i.e., whether the key distribution has been attacked by an eavesdropper. A secret key phase modulator randomly modulates pulse P1. An attenuator then reduces the average photon number of the modulated pulse P1 to a selected level greater than one to increase the likelihood of efficient, successful transmission while reducing the possibility of eavesdropping, e.g., μ=10. Both pulses P1 and P2 are sent to the intended recipient and reflected to the sender. Pulse P2 is modulated upon return to the sender using the same secret phase key previously modulated into pulse P1. Therefore, when both pulses meet together at a coupler/beamsplitter of the sender, both pulses should contain the same secret key in their phase and therefore exhibit no resulting phase difference if the photon pulse is the same pulse originated by the sender. If the returning pulse is not the pulse originated by the sender then phase differences indicative of a so-called intercept-resend attack applied by an eavesdropper EVE are indicated by a large quantum bit error rate (“QBER”) will be detectable. If EVE applies photon-split attack, the secret phase key modulated by the sender prevents Eve from knowing the encoded key information in the photon(s). Therefore, double phase encoding QKD enables use of multi-photon pulses without unacceptable loss of security, thereby enhancing QKD bit rate.
    • 表示量子键位的激光脉冲被分成两个脉冲。 除了已知的往返相位编码模式之外,秘密相位键被调制成两个脉冲之一:P 1和P 2。 秘密相位键用于识别来自发送者的返回脉冲是否是密钥分发是否已被窃听者攻击。 秘密密钥相位调制器随机调制脉冲P 1。 然后,衰减器将调制脉冲P 1的平均光子数减小到大于1的选定电平,以增加有效成功传输的可能性,同时降低窃听的可能性,例如,μ= 10。 两个脉冲P 1和P 2被发送到预期的接收者并被反射到发送者。 在使用预先调制到脉冲P 1中的相同秘密相位键返回发送器时,脉冲P 2被调制。 因此,当两个脉冲在发送器的耦合器/分束器处相遇在一起时,两个脉冲在它们的相位中应该包含相同的秘密密钥,因此如果光子脉冲是由发送器产生的相同的脉冲,则不会产生相位差。 如果返回的脉冲不是由发送器产生的脉冲,则指示由窃听者EVE施加的所谓的截距重发攻击的相位差由大量子比特误码率(“QBER”)指示。 如果EVE应用光子分裂攻击,则由发送者调制的秘密相位键防止Eve知道光子中的编码密钥信息。 因此,双相编码QKD使得能够使用多光子脉冲而不会无法接受的安全损失,从而提高QKD比特率。