会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明专利
    • DE69926159T2
    • 2006-04-20
    • DE69926159
    • 1999-02-09
    • GOODYEAR TIRE & RUBBER
    • CASTNER KENNETH FLOYD
    • C08K5/103C08K5/105C08K5/13C08K5/37C08L21/00
    • Various benefits can be attained by utilizing trans-1,4-polybutadiene in tire rubber compounds. For instance, the green strength of tire rubber compounds can be improved by including trans-1,4-polybutadiene therein. The inclusion of trans-1,4-polybutadiene in tire rubber compounds is also beneficial because it is strain crystallizable. However, due to its high melting point, it is normally necessary to heat trans-1,4-polybutadiene in order for it to be processed using conventional mixing equipment. This heating step is typically carried out by storing the trans-1,4-polybutadiene in a "hothouse" for a few days prior to its usage. During this storage period, the polymer typically undergoes undesirable oxidative crosslinking which is caused by residual cobalt catalyst and leads to gelation. In fact, the gelation can render the trans-1,4-polybutadiene unprocessable. This invention is based upon the unexpected finding that certain substituted benzoic acids, such as salicylic acid, thiosalicylic acid and acetylsalicylic acid, will act as metal deactivators in polymers. By utilizing the technique of this invention, residual cobalt and/or other metals, such as nickel, that act as prooxidants in polymers, such as trans-1,4-polybutadiene, can be deactivated. This invention more specifically discloses a stabilized trans-1,4-polybutadiene composition which is comprised of trans-1,4-polybutadiene and a substituted benzoic acid selected from the group consisting of salicylic acid, thiosalicylic acid and acetylsalicylic acid.
    • 6. 发明专利
    • FR2727684B1
    • 1998-08-07
    • FR9513099
    • 1995-11-06
    • GOODYEAR TIRE & RUBBER
    • CASTNER KENNETH FLOYD
    • C08F2/06C08F4/60C08F4/70C08F36/06C08F136/06C08F4/42
    • Cis-1,4-polybutadiene can be synthesized by polymerizing 1,3-butadiene monomer with a three component nickel catalyst system containing (a) an organonickel compound, (b) an organoaluminum compound, and (c) a fluorine containing compound. However, the molecular weight of the cis-1,4-polybutadiene prepared is typically too high to be utilized as a non-oil extended rubber. This invention is based upon the discovery that para-styrenated diphenylamine acts to reduce the molecular weight and to improve the processability of cis-1,4-polybutadiene prepared with such nickel based catalyst systems. The use of para-styrenated diphenylamine as a modifier in such polymerizations does not change the microstructure of the cis-1,4-polybutadiene produced. Accordingly, the present invention specifically discloses a process for producing cis-1,4-polybutadiene having a reduced molecular weight and improved processability which comprises polymerizing 1,3-butadiene in the presence of (a) an organonickel compound, (b) an organoaluminum compound, (c) a fluorine containing compound, and (d) para-styrenated diphenylamine; wherein the organoaluminum compound and the fluorine containing compound are brought together in the presence of the para-styrenated diphenylamine. Since para-styrenated diphenylamine is an excellent antidegradant, it also provides the rubber synthesized in its presence with antioxidant protection.
    • 7. 发明专利
    • DE69126089T2
    • 1997-10-16
    • DE69126089
    • 1991-10-12
    • GOODYEAR TIRE & RUBBER
    • CASTNER KENNETH FLOYD
    • C08F4/60C08F4/70C08F36/06C08F136/06
    • Trans-1,4-polybutadiene is a thermoplastic resin by virtue of its high level of crystallinity. Because trans-1,4-polybutadiene contains many double bonds in its backbone, it can be blended and cocured with rubbers. Even though trans-1,4-polybutadiene is a thermoplastic resin, it becomes elastomeric when cured alone or when cocured with one or more rubbers. By utilizing the catalyst system and techniques of this invention, trans-1,4-polybutadiene can be synthesized continuously to a high level of conversion with only minimal amounts of gel formation. This invention specifically relates to a process for synthesizing trans-1,4-polybutadiene in a continuous process which comprises continuously charging 1,3-butadiene monomer, an organocobalt compound, an organoaluminum compound, a para-substituted phenol, carbon disulfide, and an organic solvent into a reaction zone; allowing the 1,3-butadiene monomer to polymerize in said reaction zone to form the trans-1,4-polybutadiene; and continuously withdrawing the trans-1,4-polybutadiene from said reaction zone. It is highly preferred for the para-alkyl substituted phenol utilized in this process to contain from about 12 to about 26 carbon atoms.