会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for estimating the impact of fuel distribution and furnace configuration on fossil fuel-fired furnace emissions and corrosion responses
    • 估算燃料分配和炉配置对化石燃料燃烧炉排放和腐蚀响应的影响的方法
    • US07647204B2
    • 2010-01-12
    • US11562491
    • 2006-11-22
    • Simon P. HansonMurray F. Abbott
    • Simon P. HansonMurray F. Abbott
    • G06F17/00F23B99/00
    • F27D19/00F27D17/008
    • Provided is a method for estimating the impact of fuel distribution on emissions and corrosion responses of a fossil fuel-fired furnace. A variable is determined, termed herein separation number, by inputting fuel oil and air into the furnace, wherein the variable provides a linear relationship to multiple furnace process responses. Emission measurement equipment is located at various furnace outlet positions and thermocouples are located in tubes of the furnace, wherein the responses can be measured to obtain operating data. This operating data is interpreted based on different modes of operation of the furnace, and a change is estimated in the responses as a function of the separation number, wherein the change can be quantified to determine an impact of the fuel distribution or the furnace configuration as a result of the operating data lying on a plane defined by the separation number and a load variable.
    • 提供了一种估算燃料分布对化石燃料燃烧炉的排放和腐蚀响应的影响的方法。 通过将燃料油和空气输入到炉中来确定变量,这里称为分离数,其中该变量提供与多个炉过程响应的线性关系。 排放测量设备位于各种炉出口位置,热电偶位于炉的管中,其中可以测量响应以获得操作数据。 该操作数据基于炉的不同操作模式来解释,并且响应中估计作为分离数的函数的变化,其中可以量化变化以确定燃料分布或炉配置的影响 操作数据位于由分离数字和负载变量定义的平面上的结果。
    • 2. 发明授权
    • Perturbation test method for measuring output responses to controlled process inputs
    • 用于测量对控制过程输入的输出响应的扰动测试方法
    • US07499763B2
    • 2009-03-03
    • US11458522
    • 2006-07-19
    • Simon P. HansonMurray F. Abbott
    • Simon P. HansonMurray F. Abbott
    • G05B13/02G01D3/00G01M19/00G01M17/00G01R35/00G06F19/00
    • G05B13/022
    • The present invention is a method for determining the optimum operating practice for an industrial process. The methodology includes a combination of process control steps and data analysis techniques to investigate responses to controlled “black box” process inputs, e.g., coal and air feeds for coal-fired furnaces in the case studies above. A unique time-dependent perturbation is applied to individual process feed streams to give a signature in the data that permits the filtering and detection of various measured responses, e.g., continuous emission monitor readings for NOx, SO2, CO2, CO, and opacity for regulated electric utility furnaces. The perturbation is implemented using the plant control system. Individual control signal set points are perturbed for each piece of equipment supplying process inputs of interest. As a result, complex commercial processes can be evaluated for optimization without changing the normal configuration of the system.
    • 本发明是用于确定工业过程的最佳操作实践的方法。 该方法包括过程控制步骤和数据分析技术的组合,以调查对受控的“黑箱”过程输入的反应,例如在上述案例研究中的燃煤炉的煤和空气进料。 独特的时间依赖扰动被应用于个别的过程进料流,以便在允许过滤和检测各种测量响应的数据中进行签名,例如用于NO x,SO 2,CO 2,CO和不透明度的连续排放监测器读数用于调节 电力炉。 扰动是使用工厂控制系统实现的。 对于提供感兴趣的过程输入的每个设备的设备,扰动个别控制信号设定点。 因此,可以对复杂的商业流程进行评估,而不改变系统的正常配置。
    • 3. 发明授权
    • Apparatus for reducing NOx emissions in furnaces through the concentration of solid fuel as compared to air
    • 与空气相比,通过固体燃料的浓度来减少炉中的NOx排放的装置
    • US07472657B2
    • 2009-01-06
    • US11383245
    • 2006-05-15
    • Simon P. HansonMurray F. Abbott
    • Simon P. HansonMurray F. Abbott
    • F23C1/10
    • F23D1/00F23K3/02F23K2201/30
    • A device for optimizing coal-air proportions entering a furnace is disclosed. The invention generally comprises a burner nozzle having two ends and an outer tube forming a perimeter of the burner nozzle; an entry spool having a rear wall and defining an inlet port at one of the ends of the burner nozzle; an inner tube formed within the burner nozzle; an annular blade chamber defined between the outer tube and the inner tube; and, a blade formed within the blade chamber configured as an extension of the rear wall of the entry spool, the blade twisted to form a spiral around the inner tube, wherein fuel particles can be separated from a primary air stream and collected on the blade to form a coal-concentrated stream for entry into the furnace. As a result, three separate streams are injected into the furnace, thereby minimizing NOx through the concentration of solid fuel.
    • 公开了一种用于优化进入炉的煤 - 空气比例的装置。 本发明通常包括具有两端的燃烧器喷嘴和形成燃烧嘴的周边的外管; 具有后壁并在燃烧器喷嘴的一个端部限定入口的入口卷轴; 形成在燃烧器喷嘴内的内管; 限定在外管和内管之间的环形叶片室; 以及形成在叶片室内的叶片,其被构造为入口卷轴的后壁的延伸部,所述叶片被扭转以围绕内管形成螺旋,其中燃料颗粒可与一次空气流分离并收集在叶片上 以形成用于进入炉的煤浓缩流。 结果,将三个独立的流注入炉中,从而通过固体燃料的浓度使NOx最小化。
    • 4. 发明申请
    • Method for estimating the impact of fuel distribution and furnace configuration on fossil fuel-fired furnace emissions and corrosion responses
    • 估算燃料分配和炉配置对化石燃料燃烧炉排放和腐蚀响应的影响的方法
    • US20070239365A1
    • 2007-10-11
    • US11562491
    • 2006-11-22
    • Simon P. HansonMurray F. Abbott
    • Simon P. HansonMurray F. Abbott
    • G06F19/00G06F17/40
    • F27D19/00F27D17/008
    • Provided is a method for estimating the impact of fuel distribution on emissions and corrosion responses of a fossil fuel-fired furnace. A variable is determined, termed herein separation number, by inputting fuel oil and air into the furnace, wherein the variable provides a linear relationship to multiple furnace process responses. Emission measurement equipment is located at an inlet and outlet of an SCR of the furnace and thermocouples are located in tubes of the furnace, wherein the responses can be measured to obtain operating data. This operating data is interpreted based on different modes of operation of the furnace, and a change is estimated in the responses as a function of the separation number, wherein the change can be quantified to determine an impact of the fuel distribution or the furnace configuration as a result of the operating data lying on a plane defined by the separation number and a load variable.
    • 提供了一种估算燃料分布对化石燃料燃烧炉的排放和腐蚀响应的影响的方法。 通过将燃料油和空气输入到炉中来确定变量,这里称为分离数,其中该变量提供与多个炉过程响应的线性关系。 排放测量设备位于炉的SCR的入口和出口,热电偶位于炉的管中,其中可以测量响应以获得操作数据。 该操作数据基于炉的不同操作模式来解释,并且响应中估计作为分离数的函数的变化,其中可以量化变化以确定燃料分布或炉配置的影响 操作数据位于由分离数字和负载变量定义的平面上的结果。