会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明专利
    • Zinc oxide-based semiconductor device and method of manufacturing the same
    • 基于氧化锌的半导体器件及其制造方法
    • JP2010251384A
    • 2010-11-04
    • JP2009096486
    • 2009-04-10
    • Stanley Electric Co Ltdスタンレー電気株式会社
    • HORIO TADASHI
    • H01L21/28H01L33/28
    • H01L33/36H01L21/02403H01L21/02433H01L21/02472H01L21/02554H01L21/02565H01L21/02573H01L33/0083H01L33/28H01L33/38H01L33/42
    • PROBLEM TO BE SOLVED: To provide a method of forming a contact electrode which has high adhesive strength without causing the peeling of an electrode of a p-type ZnO-based compound semiconductor and has satisfactory ohmic contact, to provide the ZnO-based semiconductor device in which the electrode is formed, and to provide a method of manufacturing the ZnO-based semiconductor device.
      SOLUTION: The method of manufacturing the ZnO-based semiconductor device includes: a step of forming a contact metal layer containing at least one of Ni and Cu on a p-type ZnO-based semiconductor layer; and a heat treatment step of performing heat treatment of the contact metal layer and the p-type ZnO-based semiconductor layer under an oxygen-free atmosphere to form a mixture layer comprising elements of the p-type ZnO-based semiconductor layer and the contact metal layer at a boundary region between the p-type ZnO-based semiconductor layer and the contact metal layer while maintaining a metal phase layer on a surface of the contact metal layer.
      COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:为了提供一种形成具有高粘合强度的接触电极的方法,而不会引起p型ZnO基化合物半导体的电极的剥离并具有令人满意的欧姆接触,从而提供ZnO- 其中形成电极,并提供一种制造ZnO基半导体器件的方法。 解决方案:制造ZnO基半导体器件的方法包括:在p型ZnO基半导体层上形成含有Ni和Cu中的至少一种的接触金属层的步骤; 以及在无氧气氛下进行所述接触金属层和所述p型ZnO系半导体层的热处理的热处理工序,以形成包含所述p型ZnO类半导体层和所述接触层的元素的混合层 同时在接触金属层的表面上保持金属相层,在p型ZnO类半导体层和接触金属层之间的边界区域的金属层。 版权所有(C)2011,JPO&INPIT
    • 6. 发明专利
    • ZnO-BASED SEMICONDUCTOR DEVICE
    • 基于ZnO的半导体器件
    • JP2009065050A
    • 2009-03-26
    • JP2007233018
    • 2007-09-07
    • Rohm Co LtdTohoku Univローム株式会社国立大学法人東北大学
    • NAKAHARA TAKESHIYUJI HIROYUKIKAWASAKI MASASHIOTOMO AKIRATSUKASAKI ATSUSHI
    • H01L33/28
    • H01L33/16H01L21/02403H01L21/02414H01L21/02433H01L21/02554H01L21/02565H01L21/02579H01L21/02609H01L33/0083H01L33/28
    • PROBLEM TO BE SOLVED: To provide a ZnO-based semiconductor device which can be easily made into p-type by reducing a self-compensation effect and suppressing mixing-in of donor impurities. SOLUTION: A perspective axis of a normal line to the principal plane of a Mg x Zn 1-x O (0≤x a degree of the angle; in the a-axis direction, while a perspective axis of the normal line projected on the m-axis-c-axis plane is inclined by Φ m degree of the angle in the m-axis direction. The angle Φ a satisfies 70≤ä90-(180/π)arctan(tan(πΦ a /180)/tan(πΦ m /180))}≤110 and Φ m ≥1. Due to this structure, mixing-in of donor impurities is suppressed and a self-compensation effect is reduced in a ZnO-based semiconductor layer formed on the principal plane, thus making the ZnO-based semiconductor layer into p-type easily. Consequently, a desired ZnO-based semiconductor device can be manufactured. COPYRIGHT: (C)2009,JPO&INPIT
    • 要解决的问题:提供一种可以通过降低自补偿效应并抑制供体杂质的混入而容易地制成p型的ZnO基半导体器件。 &lt; P&gt;&lt; P&gt;解决方案:与Mg(SB)x Zn 1-x O(0≤x<1)衬底的主平面的法线的透视轴, 投影在a轴c轴平面上,倾斜角度的Φ a 度。 在m轴方向上突出的法线的透视轴在m轴方向上倾斜角度为Φ m 的方向。 角度Φ a 满足70≤ä90-(180 /π)ar​​ctan(tan(πΦ a / 180)/ tan(πΦ m / 180))}≤110和Φ m ≥1。 由于这种结构,抑制了供体杂质的混入,并且在主面上形成的ZnO类半导体层中的自补偿效果降低,因此使ZnO系半导体层容易成p型。 因此,可以制造所需的ZnO基半导体器件。 版权所有(C)2009,JPO&INPIT
    • 9. 发明专利
    • Formation of compound semiconductor layer
    • 形成化合物半导体层
    • JPS5957416A
    • 1984-04-03
    • JP16810182
    • 1982-09-27
    • Konishiroku Photo Ind Co Ltd
    • SHINDOU MASANARISATOU SHIGERUKANEKO AKINARI
    • C23C14/00C30B23/02H01L21/20H01L21/203H01L21/363
    • C30B23/02C23C14/0021C23C14/0047C23C14/0057C30B29/40C30B29/48H01L21/0237H01L21/02546H01L21/02557H01L21/02631H01L33/0062H01L33/0083Y10S117/906Y10S438/909
    • PURPOSE: To form a thin film with excellent crystalline condition and excellent purity with a high productivity by a method wherein material for a compound semiconductor layer is accumulated on a substrate by sputtering without decomposition under the existance of ionized or activated hydrogen.
      CONSTITUTION: A substrate 2 is placed in an upper part in a metal bell jar 1 and BN-made Knudsen-cell type deposition sources 5, 6 are provided below the substrate. Ga 3 and As 4 are put in the cell 5 and the cell 6 respectively. The bell jar 1 is exhausted to vacuum by a vacuum pump to which the bell jar 1 is connected by an exhaust duct 10 with a butterfly valve 8. While hydrogen activated by a gas discharge tube 9 is introduced into the bell jar 1 toward the substrate 2 at the current rate of 100ml/minW200ml/min, the substrate 2 is heated to approximately 400W800°C by a heater 7 and at the same time Ga 3 and As 4 are heated and their vapor is sputtered toward the substrate 2 to form a GaAs film on the substrate 2. The activated hydrogen is supplied so as to keep the rate of vacuum of the bell jar 1, 10
      -4 W10
      -5 Torr.
      COPYRIGHT: (C)1984,JPO&Japio
    • 目的:通过在离子化或活化氢存在下通过溅射而不分解地将化合物半导体层的材料堆积在基板上的方法,以高的生产率形成具有优异结晶条件和优异纯度的薄膜。 构成:将基板2放置在金属钟罩1的上部,并且在基板的下方设置BN制造的克氏电池型沉积源5,6。 Ga 3和As 4分别放入电池5和电池6中。 钟罩1通过真空泵排出,真空泵通过带有蝶阀8的排气管道10连接到钟罩1。而由气体放电管9激活的氢气被引入钟罩1中,朝向基板 2以目前的速率为100ml / min-200ml / min,通过加热器7将基板2加热至约400-800℃,同时加热Ga 3和As 4,并将其蒸汽朝向 基板2以在基板2上形成GaAs膜。供应活化氢以保持钟罩1的真空度为10 -4 -10 -5乇。