会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • 3차원 구체 구동시스템
    • 三维刚度球执行系统,用于空间姿态控制
    • KR1020140014634A
    • 2014-02-06
    • KR1020120081146
    • 2012-07-25
    • 한국항공우주연구원
    • 김대관윤형주강우용김용복최홍택
    • B64G1/24G05D1/08
    • B64G1/285B64G1/24B64G1/32G05D1/0808H02K5/173H02K5/1737H02K7/088H02K16/04H02K17/16H02K41/025H02K2201/18
    • The present invention relates to a three dimensional sphere actuating system for controlling the attitude of a satellite, comprising: a support frame (10) having a polyhedral shape; a sphere (20) positioned at the inner center of the support frame (10); a plurality of ball bearings (30) installed at the inner corners of the support frame (10) and being in contact with the surface of the sphere (20); a plurality of electromagnets (40) arranged at the periphery of the ball bearings and forming a magnetic field to rotate the sphere (20); and a controller (50) for the rotational direction and the rotational speed of the sphere (20) by controlling the electromagnets (40). The present invention need not install a magnetic levitation apparatus for levitating the sphere in the air by making the ball bearings support the sphere installed within a satellite attitude control apparatus and additionally, can precisely control the attitude of the satellite by maintaining a position of the sphere against vibration, and so on.
    • 本发明涉及一种用于控制卫星姿态的三维球体致动系统,包括:具有多面体形状的支撑框架(10); 位于支撑框架(10)的内部中心的球体(20); 安装在所述支撑框架(10)的内角处并与所述球体(20)的表面接触的多个滚珠轴承(30); 多个电磁体(40)布置在球轴承的周边并形成磁场以旋转球体(20); 以及通过控制电磁体(40)来控制球体(20)的旋转方向和旋转速度的控制器(50)。 本发明不需要通过使球轴承支撑安装在卫星姿态控制装置内的球体来安装悬浮球体的磁悬浮装置,而且还可以通过维持球体的位置来精确地控制卫星的姿态 反对振动等等。
    • 5. 发明授权
    • 단일 입출력 제어기를 이용한 인공위성의 3축 자세 제어 시스템
    • 使用单输入单输出控制器的卫星三轴姿态控制系统
    • KR101517391B1
    • 2015-05-06
    • KR1020130165033
    • 2013-12-27
    • 한국항공우주연구원
    • 윤형주최홍택
    • B64G1/24G05D1/08
    • B64G1/36G05D1/0883
    • 본발명에따른단일입출력제어기를이용한인공위성의 3축자세제어시스템은인공위성의현재자세가입력되는인공위성다이나믹스; 상기인공위성다이나믹스에서출력된인공위성의현재자세를검출하는자세센서; 상기자세센서에서출력된인공위성의현재자세에서쿼터니언(Quaternion)을이용하여인공위성의목표자세를얻기위한인공위성의고유축회전각도를산출하는제1산출부; 상기제1산출부에서출력된인공위성의고유축회전각도에응답하여제어신호를출력하는단일입출력제어기; 상기단일입출력제어기에서출력된제어신호에응답하여인공위성의고유축방향의토크를산출하는제2산출부; 및상기제2산출부에서출력된인공위성의고유축방향으로상기인공위성을구동시키는엑추에이터를포함하는것을특징으로한다.
    • 根据本发明,使用单输入单输出控制器的卫星的三轴姿势控制系统包括:输入卫星的当前位置的卫星动态; 位置传感器,用于检测从卫星动态输出的卫星的当前位置; 第一计算部分,用于计算卫星的独特轴旋转角度,以从位置传感器输出的卫星的当前位置使用四元数来获取卫星的目标位置; 单个输入/输出控制装置,用于响应于在第一计算部分输出的卫星的唯一轴旋转角度输出控制信号; 第二计算部分,用于响应于从单个输入/输出控制装置输出的控制信号计算唯一轴方向上的转矩; 以及致动器,用于在第二计算部分输出的卫星的唯一轴方向上操作卫星。
    • 6. 发明授权
    • 반구형 공진 자이로
    • HEMISPHERICAL RESONANT GYRO
    • KR101414391B1
    • 2014-07-02
    • KR1020130066437
    • 2013-06-11
    • 순천대학교 산학협력단한국항공우주연구원
    • 진재현윤형주최홍택용기력
    • G01C19/56G01C19/5783
    • G01C19/56G01C19/5691G01C19/5783H05K13/00
    • The present invention relates to a resonant gyro and, more specifically, to the electrode shape of an electrode block for exciting, sensing, and controlling a resonant gyro. The hemispherical resonant gyro according to the present invention comprises a resonator having a hollow hemispherical shape to be excited; a support having a bar shape extended downward from the center of the hollow hemispherical shape of the resonator; an electrode block having a shape corresponding to the inner surface of the resonator and inserted in the resonator; a support groove formed downward from the center of the electrode block; and a base integrated with the electrode block and supporting the electrode block. The electrode block comprises an excitation electrode installed in the insertion surface of the electrode block to generate the vibration of the resonator, and a measurement electrode installed in the insertion surface of the electrode to measure amplitude when the resonator vibrates. The excitation electrode and the measurement electrode are radially arranged from the center of the insertion surface of the electrode block. The excitation electrode and the measurement electrode are arranged on the electrode block at each different height. The hemispherical resonant gyro enables effective excitation and precise measurement. Also, the hemispherical resonant gyro can prevent damage to the resonator due to excitation force by minimizing the magnitude of the stress applied to the support point of the resonator in the excitation.
    • 谐振陀螺仪技术领域本发明涉及一种谐振陀螺仪,更具体地,涉及用于激发,感测和控制谐振陀螺仪的电极块的电极形状。 根据本发明的半球谐振陀螺仪包括具有待激发的中空半球形状的谐振器; 具有从谐振器的中空半球形的中心向下延伸的棒状的支撑件; 具有与谐振器的内表面对应的形状并插入谐振器的电极块; 从电极块的中心向下形成的支撑槽; 以及与电极块集成并支撑电极块的基座。 电极块包括安装在电极块的插入表面中的激励电极以产生谐振器的振动,以及安装在电极的插入表面中的测量电极,以在谐振器振动时测量振幅。 励磁电极和测量电极从电极块的插入表面的中心放射状排列。 激发电极和测量电极在每个不同高度处布置在电极块上。 半球谐振陀螺可实现有效激励和精确测量。 此外,半球形谐振陀螺仪可以通过使施加到谐振器的支撑点的激励的应力的幅度最小化来防止由于激励力而对谐振器的损坏。
    • 7. 发明授权
    • 선형배열 영상센서와 자세제어 센서 간의 절대 오정렬 보정방법
    • 姿态传感器与线性阵列图像传感器之间的绝对误差校准方法
    • KR101282718B1
    • 2013-07-05
    • KR1020120157652
    • 2012-12-28
    • 한국항공우주연구원
    • 윤형주최홍택
    • G05D1/08
    • G06T7/80B64G1/361G05D1/0883G06T3/4053G06T3/4076G06T5/006G06T7/20G06T2200/21G06T2207/10032G06T2207/20221G06T2207/30181G06T2210/56H04N1/00H04N5/23232H04N5/3692H04N17/002
    • PURPOSE: An absolute misalignment correction method between a linear arrangement image sensor and a pose control sensor is provided to correct the absolute misalignment between a pose control sensor and an image payload by applying a technique of calculating the posture of a star tracker sensor. CONSTITUTION: Multiple targets on the ground are photographed using an image payload, and then the location information of the targets from the multiple photographed images is compared with the existing location information of the targets (S100). To the information obtained in the previous step (S100), a method of estimating absolute misalignment using an image taken by a star tracker sensor, which uses a monoscopic image sensor, is applied in order to estimate an absolute misalignment value between the pose control sensor and the image payload (S200). The calculated misalignment estimation value is applied to the pose control sensor, and the absolute misalignment is corrected (S300). [Reference numerals] (S100) Photograph and compare ground targets; (S200) Estimate an absolute misalignment value; (S300) Correct the value
    • 目的:提供线性布置图像传感器和姿势控制传感器之间的绝对不对准校正方法,通过应用计算星形跟踪器传感器的姿势的技术来校正姿态控制传感器和图像有效载荷之间的绝对不对准。 构成:使用图像有效载荷拍摄地面上的多个目标,然后将来自多个拍摄图像的目标的位置信息与目标的现有位置信息进行比较(S100)。 对于前一步骤(S100)获得的信息,应用使用采用单视场图像传感器的星形跟踪器传感器拍摄的图像来估计绝对不对准的方法,以估计姿态控制传感器之间的绝对不对准值 和图像有效载荷(S200)。 将计算出的未对准估计值应用于姿态控制传感器,并且校正绝对失准(S300)。 (附图标记)(S100)拍摄并比较地面目标; (S200)估计绝对偏差值; (S300)更正值
    • 8. 发明公开
    • 가변속 김발 제어 모멘트 자이로
    • 可变速度GIMBAL控制MOMENT GYRO
    • KR1020120076895A
    • 2012-07-10
    • KR1020100138658
    • 2010-12-30
    • 한국항공우주연구원
    • 윤형주
    • B64G1/28G01C19/30
    • B64G1/286G01C19/30
    • PURPOSE: A variable speed gimbal control moment gyro is provided to generate the torque of a three dimensional direction for controlling the posture of an aerospace vehicle by variably controlling the rotational speed of a flywheel. CONSTITUTION: A variable speed gimbal control moment gyro comprises a flywheel(110), a flywheel driving machine(120), a first gimbal unit(130), a second gimbal unit(140), and a flying object platform(150). The flywheel stores angular momentum. The flywheel driving machine varies the rotation speed of the flywheel. The first gimbal unit is connected to the flywheel driving machine, and rotates the flywheel driving machine to a first rotation direction based on a first gimbal rotary shaft crossing with a rotary shaft of the flywheel at a right angle. The second gimbal unit is connected to the first gimbal unit, and rotates the first gimbal unit to a second rotation direction based on a second gimbal rotary shaft crossing with the first gimbal rotary shaft of the first gimbal unit. The flying object platform is connected to the second gimbal unit and receives reaction torque generated the change of the angular momentum of the flywheel.
    • 目的:提供可变速万向控制力矩陀螺仪,以通过可变地控制飞轮的转速来产生用于控制航空航天车辆的姿势的三维方向的扭矩。 构成:变速万向控制力矩陀螺仪包括飞轮(110),飞轮驱动机器(120),第一万向节单元(130),第二万用节单元(140)和飞行平台(150)。 飞轮存储角动量。 飞轮驱动机器改变飞轮的转速。 第一万向架单元连接到飞轮驱动机,并且基于与飞轮的旋转轴成直角交叉的第一万向架旋转轴将飞轮驱动机旋转到第一旋转方向。 第二万向节单元连接到第一万向架单元,并且基于与第一万向架单元的第一万向架旋转轴交叉的第二平衡旋转轴将第一万向架单元旋转到第二旋转方向。 飞行物体平台连接到第二万向节单元,并接收产生飞轮角动量变化的反作用转矩。