会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 11. 发明授权
    • Method and device for acquiring weak global navigation satellite system (GNSS) signals
    • 用于获取弱全球导航卫星系统(GNSS)信号的方法和装置
    • US07522100B2
    • 2009-04-21
    • US11173894
    • 2005-07-01
    • Chun YangHansheng Wang
    • Chun YangHansheng Wang
    • G01S1/00
    • G01S19/29G01S19/24G01S19/37
    • A Global Navigation Satellite System (GNSS) receiver and associated method capable of acquiring weak GNSS signals from a plurality of GNSS satellites produces a GNSS signal's code time, carrier frequency, and data bit transition parameters for subsequent signal tracking and position fixing. The GNSS receiver includes a baseband signal processor with special functionalities for acquiring weak signals. In a preferred embodiment, the time and frequency uncertainty space is reduced using available information and then special techniques are used to rapidly search the remaining uncertainty space. Successive reversal of short-length correlations within a data bit interval (a block) enables data bit transition detection and data bit sign correction prior to coherent integration. Fast Fourier Transform (FFT) is applied as a bank of bandpass filters to coherently accumulate blocks of short-length correlations over extended coherent integration intervals to boost the signal power while averaging noise out despite unknown data bit transitions.
    • 能够从多个GNSS卫星获取弱GNSS信号的全球导航卫星系统(GNSS)接收机和相关联的方法产生用于随后的信号跟踪和位置固定的GNSS信号的码时间,载波频率和数据位转换参数。 GNSS接收机包括具有用于采集弱信号的特殊功能的基带信号处理器。 在优选实施例中,使用可用信息减少时间和频率不确定性空间,然后使用特殊技术来快速搜索剩余的不确定性空间。 在数据位间隔(一个块)内的短期相关性的连续反转使得能够在相干积分之前进行数据位转换检测和数据位符号校正。 快速傅里叶变换(FFT)作为一组带通滤波器被应用于相干累加扩展相干积分区间的短长度相关块,以提升信号功率,同时平均噪声输出,尽管未知数据位转换。
    • 12. 发明授权
    • False reacquisition mitigation in high sensitivity navigational satellite signal receivers
    • 高灵敏度导航卫星信号接收机中的虚拟反馈缓解
    • US07479924B2
    • 2009-01-20
    • US11274054
    • 2005-11-14
    • Zhike JiaShridhara A. KudrethayaChi-Shin Wang
    • Zhike JiaShridhara A. KudrethayaChi-Shin Wang
    • G01S1/00H04B1/00
    • G01S19/24
    • The techniques to detect and mitigate the false reacquisition in a global satellite navigation receiver are disclosed. The false reacquisition due to frequency side-lobes and code autocorrelation secondary lobes are considered for mitigation. A set of two threshold values is used to detect correct reacquisition and reject false reacquisition. While the reacquisition of the signal is straight forward when the correlation is clear with the power above the first threshold, it is not so clear when the power is between two thresholds. So a further search for the maximum power among the retained dwells results in correct reacquisition. The search range depends upon the signal blockage interval and receiver dynamics. The feedback from navigational solution may be used to determine the search range both in frequency and code phase. In the case of frequency side-lobes, which occur only at specified frequency components, these frequencies are tested for maximum power response. The code side-lobes have similar characteristics and can be distinguished by the actual peak.
    • 公开了一种用于检测和减轻全球卫星导航接收机中的虚假重新捕获的技术。 由于频率旁瓣和代码自相关副瓣引起的虚假反射被考虑用于缓解。 一组两个阈值用于检测正确的重新获取并拒绝错误的重新获取。 当信号的重新获取是直接的,当相关性清楚时,功率高于第一阈值,当功率在两个阈值之间时不是很清楚。 因此,进一步搜索保留住宅中的最大权力会导致正确的重新获取。 搜索范围取决于信号阻塞间隔和接收机动态。 导航解决方案的反馈可用于确定频率和码相位的搜索范围。 在仅在特定频率分量下发生的频率旁瓣的情况下,测试这些频率以获得最大功率响应。 代码旁瓣具有相似的特征,可以通过实际峰值来区分。
    • 14. 发明授权
    • Navigational signal tracking in low power mode
    • 低功率模式下的导航信号跟踪
    • US07847726B2
    • 2010-12-07
    • US11615431
    • 2006-12-22
    • Zhike JiaShridhara A. KurethayaChi-Shin Wang
    • Zhike JiaShridhara A. KurethayaChi-Shin Wang
    • G01S1/00
    • G01S19/34G01S19/24
    • The present invention provides systems and methods for navigational signal tracking in low power mode to conserve the power of handheld navigation receivers. In an embodiment, the receiver cycles between sleep and wakeup states. During the sleep state, most of the components of the receiver are powered off to conserve power, and during the wakeup state, the receiver tracks navigational signals. In an embodiment, the duty cycle of the sleep/wakeup states depends on the receiver dynamic state, e.g., whether the receiver is accelerating. In another embodiment, during the wakeup state, the receiver selects a tracking mode based on the signal strength. Under weak signal conditions, a tracking mode using a long integration to track the satellite signal is disclosed. In one embodiment, a tracking mode tracks the navigation signal by performing data aided integration using known or predicted data bits, such as the TLM and HOW words.
    • 本发明提供了用于低功率模式的导航信号跟踪的系统和方法,以节省手持式导航接收机的功率。 在一个实施例中,接收器在睡眠和唤醒状态之间循环。 在睡眠状态期间,接收机的大多数组件被关闭以节省功率,并且在唤醒状态期间,接收器跟踪导航信号。 在一个实施例中,睡眠/唤醒状态的占空比取决于接收机的动态状态,例如接收机是否正在加速。 在另一个实施例中,在唤醒状态期间,接收机基于信号强度来选择跟踪模式。 在弱信号条件下,公开了使用长积分跟踪卫星信号的跟踪模式。 在一个实施例中,跟踪模式通过使用已知或预测的数据位(诸如TLM和HOW字)执行数据辅助积分来跟踪导航信号。
    • 15. 发明授权
    • Efficient and flexible numerical controlled oscillators for navigational receivers
    • 高效灵活的数字控制振荡器,用于导航接收机
    • US07830951B2
    • 2010-11-09
    • US11694296
    • 2007-03-30
    • Zhike Jia
    • Zhike Jia
    • H04B1/00H04L27/06
    • H04L27/0014G01S19/235H04L2027/0016H04L2027/0053
    • Provided herein are systems and methods for achieving long integration of an input signal by compensating the frequency and phase of each sample of the input signal. In an embodiment, a Numerical Controlled Oscillator (NCO) of the receiver is modified to include a variable control input that allows the output frequency of the NCO to be adjusted based on a rate of change of frequency. The rate of change of frequency may be estimated based on the relative velocity of a satellite to the receiver computed from satellite orbit parameters or ephemeris. The rate of change of frequency may also be estimated based on frequency measurements of previous samples. The modified NCO may be used as a carrier NCO or code NCO of the receiver to provide frequency and phase compensation of each sample of the input signal.
    • 本文提供了通过补偿输入信号的每个样本的频率和相位来实现输入信号的长时间积分的系统和方法。 在一个实施例中,接收机的数控振荡器(NCO)被修改为包括可变控制输入,其允许基于频率变化率来调整NCO的输出频率。 可以根据从卫星轨道参数或星历表计算的卫星到接收机的相对速度来估计频率变化率。 也可以基于先前样本的频率测量来估计频率变化率。 修改的NCO可以用作接收机的载波NCO或代码NCO,以提供输入信号的每个采样的频率和相位补偿。
    • 17. 发明授权
    • Position and time determination under weak signal conditions
    • 弱信号条件下的位置和时间确定
    • US07567208B2
    • 2009-07-28
    • US11771845
    • 2007-06-29
    • Jun MoShaowei Han
    • Jun MoShaowei Han
    • G01S1/00
    • G01S19/24G01S19/42
    • Described herein are systems and methods that are capable of determining receiver position and system time under weak signal conditions. When the receiver is unable to accurately determine the satellite signal travel time, e.g., due to weak signal reception or some other condition, the receiver can still estimate the pseudo-range for the satellite based on an initial receiver position and system time. In this case, the system and methods described herein provide the necessary initial receiver position and system time with enough accuracy to estimate the pseudo-range, even under weak signal conditions. The receiver can then use the estimated pseudo-range to determine a more accurate receiver position.
    • 这里描述的是能够在弱信号条件下确定接收机位置和系统时间的系统和方法。 当接收机不能准确地确定卫星信号传播时间时,例如由于信号接收弱或某种其他条件,接收机仍然可以基于初始的接收机位置和系统时间来估计卫星的伪距离。 在这种情况下,即使在弱信号条件下,本文所述的系统和方法也提供了足够准确的必要的初始接收机位置和系统时间来估计伪距离。 然后,接收机可以使用估计的伪距来确定更准确的接收机位置。
    • 18. 发明授权
    • Navigational positioning without timing information
    • 导航定位无定时信息
    • US07535414B2
    • 2009-05-19
    • US11759769
    • 2007-06-07
    • Shaowei Han
    • Shaowei Han
    • G01S1/02G01S5/14
    • G01S19/256G01S19/45
    • Provided herein are systems and methods that enable a navigation receiver to determine receiver position using a low ppm (Parts Per Million) Real Time Clock (RTC) under weak satellite signal reception conditions without the need for timing information from navigation satellites or aiding systems. Under weak signal conditions, the receiver is unable to demodulate navigation data bits but may be able to synchronize with the one ms PN sequences and 20 ms data bit edges of a received signal. In this case, the receiver is unable to determine the signal travel time from the navigation data bits resulting in one ms and/or 20 ms integer ambiguities in the travel time. Systems and methods are provided for resolving these one ms and/or 20 ms integer ambiguities and correct or reconstruct the pseudorange measurements accordingly. The reconstructed pseudorange measurements are used to accurately determine the receiver position.
    • 本文提供的系统和方法使得导航接收机能够在弱卫星信号接收条件下使用低ppm(百万分之几)实时时钟(RTC)来确定接收机位置,而不需要来自导航卫星或辅助系统的定时信息。 在弱信号条件下,接收机不能解调导航数据位,但是可能能够与接收到的信号的1ms PN序列和20ms数据比特边沿同步。 在这种情况下,接收机不能从导航数据位确定信号行进时间,导致行进时间中的一毫秒和/或20毫秒的整数模糊度。 提供了用于解决这些1ms和/或20ms整数模糊度的系统和方法,并相应地校正或重构伪距测量。 重建的伪距测量用于准确地确定接收机的位置。
    • 19. 发明授权
    • Efficient and flexible GPS receiver baseband architecture
    • 高效灵活的GPS接收机基带架构
    • US07428259B2
    • 2008-09-23
    • US11123861
    • 2005-05-06
    • Hansheng WangChi-Shin Wang
    • Hansheng WangChi-Shin Wang
    • H04B1/00
    • G01S19/37G01S19/235
    • The present invention provides a new baseband integrated circuit (IC) architecture for direct sequence spread spectrum (DSSS) communication receivers. The baseband IC has a single set of baseband correlators serving all channels in succession. No complex parallel channel hardware is required. A single on-chip code Numerically Controlled Oscillator (NCO) drives a pseudorandom number (PN) sequence generator, generates all code sampling frequencies, and is capable of self-correct through feedback from an off-chip processor. A carrier NCO generates corrected local frequencies. These on-chip NCOs generate all the necessary clocks. This architecture advantageously reduces the total hardware necessary for the receiver and the baseband IC thus can be realized with a minimal number of gate count. The invention can accommodate any number of channels in a navigational system such as the Global Positioning System (GPS), GLONASS, WAAS, LAAS, etc. The number of channels can be increased by increasing the circuit clock speed.
    • 本发明提供了一种用于直接序列扩频(DSSS)通信接收机的新的基带集成电路(IC)架构。 基带IC具有一组基带相关器,连续地为所有通道服务。 不需要复杂的并行通道硬件。 单个片上代码数控振荡器(NCO)驱动伪随机数(PN)序列发生器,产生所有代码采样频率,并且能够通过来自片外处理器的反馈进行自校正。 载波NCO产生校正的本地频率。 这些片上NCO产生所有必需的时钟。 该架构有利地减少了接收机和基带IC所需的总硬件,因此可以以最小数量的门数实现。 本发明可以容纳诸如全球定位系统(GPS),GLONASS,WAAS,LAAS等导航系统中的任何数量的信道。可以通过增加电路时钟速度来增加信道数量。
    • 20. 发明授权
    • Narrow correlator technique for multipath mitigation
    • 用于多径缓解的窄相关器技术
    • US08000378B2
    • 2011-08-16
    • US11615704
    • 2006-12-22
    • Jun MoShaowei Han
    • Jun MoShaowei Han
    • H04B1/00H04L27/06
    • H04B1/7085H04B1/709H04B2201/70715
    • The present invention provides systems and methods for implementing narrowly spaced correlators to mitigate multipath error, and systems and methods for adaptively changing the correlator spacing for varying multipath conditions. In an embodiment, two sets of correlators with the same code frequency but different code phases are used to implement an adjustable correlator spacing. The correlator spacing is determined by the code phase difference between the two sets of correlators, which can be adjusted, e.g., by adjusting the code phase values of Numerically Controlled Oscillators (NCOs). An advantage of embodiments of the present invention is that they can achieve much narrower correlator spacings than conventional techniques, e.g., by making the code phase difference between the two sets of correlators very small. Further, the correlator spacing can be adjusted for varying multipath conditions, whereas the correlator spacing in conventional techniques is fixed.
    • 本发明提供了用于实现窄间隔相关器以减轻多路径误差的系统和方法,以及用于自适应地改变相关器间隔以用于变化的多径条件的系统和方法。 在一个实施例中,使用具有相同代码频率但不同代码阶段的两组相关器来实现可调整的相关器间隔。 相关器间距由两组相关器之间的码相位差确定,这可以通过例如调节数控振荡器(NCO)的码相位值来调整。 本发明的实施例的优点在于,它们可以实现比常规技术更窄的相关器间隔,例如通过使两组相关器之间的码相位差非常小。 此外,可以针对变化的多径条件来调整相关器间距,而常规技术中的相关器间隔是固定的。