会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 14. 发明授权
    • Surface-enhanced raman scattering substrates
    • 表面增强拉曼散射基板
    • US09086380B2
    • 2015-07-21
    • US14027154
    • 2013-09-13
    • Som TyagiKambiz Pourrezaei
    • Som TyagiKambiz Pourrezaei
    • G01J3/44G01N21/65
    • G01N21/658G01J3/44Y10T428/24372Y10T428/24413
    • A method for the formation of surface enhanced Raman scattering substrates. The method produces thin substrates that have a nanoparticle ink deposited thereon. The nanoparticle ink may be any suitable nanoparticle ink such as silver, gold or copper nanoparticle ink which includes stabilized nanoparticles. The substrates and nanoparticle ink undergo a first step of heating in order to remove liquid vehicle from the ink The substrates and nanoparticles then undergo a second step of heating for an amount of time sufficient to remove a substantial portion of the stabilizer and provide a fractal aggregate nanoparticle layer on the substrate having a certain resistivity or conductivity suitable for Raman scattering. This creates SERS substrates with enhanced amplification properties.
    • 一种形成表面增强拉曼散射基板的方法。 该方法产生沉积有纳米颗粒油墨的薄基材。 纳米颗粒油墨可以是任何合适的纳米颗粒油墨,例如包括稳定的纳米颗粒的银,金或铜纳米颗粒油墨。 底物和纳米颗粒油墨经历加热第一步骤以从油墨中除去液体载体。然后,底物和纳米颗粒经历第二步骤,加热足够时间以除去大部分稳定剂并提供分形聚集体 具有适于拉曼散射的一定电阻率或电导率的衬底上的纳米颗粒层。 这产生具有增强扩增性能的SERS底物。
    • 15. 发明授权
    • High-throughput routing in an optical network having a mesh topology
    • 具有网格拓扑的光网络中的高吞吐量路由
    • US09077482B2
    • 2015-07-07
    • US13852328
    • 2013-03-28
    • Peter J. WinzerKodialam MuraliTirunell V. Lakshman
    • Peter J. WinzerKodialam MuraliTirunell V. Lakshman
    • H04J14/02H04L12/721H04L12/715H04L12/727
    • H04J14/0284H04J14/0201H04J14/0227H04J14/0257H04J14/0267H04L45/121H04L45/62H04L45/64
    • An optical routing scheme in which an optical network having a mesh topology is configured to route optical packets through an optical routing layout superimposable with the mesh topology, but having a star-like topology. Using this routing layout, the optical network can be configured to transport optical packets from respective ingress nodes, through the hub node located at the star center, to respective egress nodes in a manner that enables a data throughput that approaches the theoretical capacity. No special hardware is required for implementing the hub functionality, and any node of the optical network can be configured to serve as the hub node. The latter feature enables relatively straightforward optimization of the optical routing layout and transmission schedule, e.g., by changing the identity of the hub node and adjusting the transmission schedule at the ingress nodes to synchronize packet arrivals to the hub node.
    • 一种光路由方案,其中具有网状拓扑的光网络被配置为通过与网状拓扑重叠但具有星形拓扑的光路由布局路由光分组。 使用该路由布局,光网络可以被配置为以使得能够接近理论容量的数据吞吐量的方式将来自相应入口节点的光分组传输到位于星中心的集线器节点到相应出口节点。 实现集线器功能不需要特殊硬件,光网络的任何节点都可以配置为集线器节点。 后者的特征使得可以例如通过改变集线器节点的身份并调整入口节点处的传输调度以使分组到达中心到集线器节点而使光路由布局和传输调度相对简单的优化。
    • 19. 发明授权
    • Pedestal-based dielectric-loaded cavity resonator
    • 基于载体的介质负载谐振腔
    • US09013252B1
    • 2015-04-21
    • US14060946
    • 2013-10-23
    • Alcatel-Lucent USA Inc.
    • Tsu-Wei LinNoriaki Kaneda
    • H01P7/10H01P1/20
    • H01P7/10H01P1/2084
    • A dielectric-loaded cavity resonator has a conductive (e.g., copper) box defining a cavity and a dielectric (e.g., ceramic) resonator mounted within the box. The dielectric resonator has a cylindrical dielectric post and first and second dielectric pedestals respectively connected to the ends of the post and having lateral dimensions greater than the diameter of the post. Insulating (e.g., PTFE) pads are mounted onto outer surfaces of the pedestals to provide air gaps between the pedestals and corresponding top and bottom walls of the box. In certain embodiments, the pedestals have rectilinear, 3D shapes completely or only partially covering the top and bottom walls of the cavity, while, in other embodiments, the pedestals have cylindrical shapes maximally or less than maximally covering the top and bottom walls of the cavity.
    • 电介质负载腔谐振器具有限定空腔的导电(例如铜)盒和安装在盒内的电介质(例如,陶瓷)谐振器。 介质谐振器具有圆柱形电介质柱和分别连接到柱的端部并且具有大于柱的直径的横向尺寸的第一和第二介电基座。 绝缘(例如,PTFE)垫被安装在基座的外表面上,以在基座和相应的箱体顶壁和底壁之间提供气隙。 在某些实施例中,基座具有完全或仅部分地覆盖空腔的顶壁和底壁的直线形3D形状,而在其它实施例中,基座具有最大或最小覆盖空腔的顶壁和底壁的圆柱形形状 。
    • 20. 发明授权
    • Plasmonic device for modulation and amplification of plasmonic signals
    • 等离激元信号调制和放大的等离子体装置
    • US08983242B2
    • 2015-03-17
    • US12023489
    • 2008-01-31
    • Girsh BlumbergBenard Yurke
    • Girsh BlumbergBenard Yurke
    • G02F1/295G02F1/035G02B6/12G02B6/122B82Y20/00
    • G02B6/1226B82Y20/00
    • According to one embodiment of the invention, a plasmonic device has a beam splitter adapted to split a surface-plasmon (SP) input beam into first and second SP beams and direct them along first and second propagation paths, respectively. One of the propagation paths has a plasmonic-beam interaction region adapted to controllably change the phase of the corresponding split beam within that interaction region in response to an SP control signal applied thereto. The plasmonic device further has an SP beam mixer adapted to receive the first and second beams from their respective propagation paths and to mix them to produce an SP output signal. In various configurations, the plasmonic device can operate as a plasmonic-signal amplifier, a plasmonic-beam router, a 1×2 plasmonic-beam switch, and/or a plasmonic modulator.
    • 根据本发明的一个实施例,等离子体激元装置具有适于将表面等离子体(SP)输入光束分裂成第一和第二SP光束并分别沿着第一和第二传播路径引导的分束器。 传播路径中的一个具有等离子体 - 束相互作用区域,其适于响应于施加到其上的SP控制信号来可控地改变该相互作用区域内的相应分割光束的相位。 等离子体元件装置还具有适于从其相应传播路径接收第一和第二波束并混合它们以产生SP输出信号的SP波束混合器。 在各种配置中,等离子体激元器件可以作为等离子体信号放大器,等离子体激元束路由器,1×2等离激元光束开关和/或等离子体激元调制器来操作。