会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明申请
    • HANDHELD GLOBAL POSITIONING SYSTEM DEVICE
    • 手持式全球定位系统装置
    • US20120050099A1
    • 2012-03-01
    • US12871705
    • 2010-08-30
    • Javad ASHJAEELev B. RapoportMikhail GribkovAlexander Gribkov
    • Javad ASHJAEELev B. RapoportMikhail GribkovAlexander Gribkov
    • G01S19/48G01S19/37G01S19/35G01S19/12G01S19/25
    • G01S19/43G01C11/00G01S5/16G01S19/47
    • A handheld GNSS device for determining position data for a point of interest is provided. The device includes a housing, handgrips integral to the housing for enabling a user to hold the device, and a display screen integral with the housing for displaying image data and orientation data to assist a user in positioning the device. The device further includes a GNSS antenna and at least one communication antenna, both integral with the housing. The GNSS antenna receives position data from a plurality of satellites. One or more communication antennas receive positioning assistance data related to the position data from a base station. The GNSS antenna has a first antenna pattern, and the at least one communication antenna has a second antenna pattern. The GNSS antenna and the communication antenna(s) are configured such that the first and second antenna patterns are substantially separated. Coupled to the GNSS antenna, within the housing, is at least one receiver. Further, the device includes, within the housing, orientation circuitry for generating orientation data of the housing based upon a position of the housing related to the horizon, imaging circuitry for obtaining image data concerning the point of interest for display on the display screen, and positioning circuitry, coupled to the at least one receiver, the imaging circuitry, and the orientation circuitry, for determining a position for the point of interest based on at least the position data, the positioning assistance data, the orientation data, and the image data.
    • 提供了用于确定兴趣点的位置数据的手持式GNSS装置。 该装置包括壳体,与壳体一体的手柄,用于使用户能够握持装置,以及与壳体一体的显示屏幕,用于显示图像数据和取向数据,以帮助用户定位装置。 该装置还包括GNSS天线和至少一个与壳体一体的通信天线。 GNSS天线从多个卫星接收位置数据。 一个或多个通信天线从基站接收与位置数据相关的定位辅助数据。 GNSS天线具有第一天线方向图,并且所述至少一个通信天线具有第二天线方向图。 GNSS天线和通信天线被配置为使得第一和第二天线图案基本上分离。 耦合到GNSS天线,在壳体内,是至少一个接收器。 此外,该装置在壳体内包括用于基于与水平线相关的壳体的位置产生壳体的取向数据的定向电路,用于获得关于用于在显示屏上显示的兴趣点的图像数据的成像电路,以及 至少一个接收器,成像电路和取向电路的定位电路,至少基于位置数据,定位辅助数据,取向数据和图像数据来确定兴趣点的位置 。
    • 14. 发明申请
    • System and Method for A-GPS Positioning of a Mobile Device
    • 移动设备的A-GPS定位系统和方法
    • US20100302098A1
    • 2010-12-02
    • US12849493
    • 2010-08-03
    • Martin ThomsonNeil HarperKhiem Tran
    • Martin ThomsonNeil HarperKhiem Tran
    • G01S19/05G01S19/12
    • G01S19/28G01S19/06G01S19/20G01S19/258
    • A system and method for estimating the position of a mobile device using information from a constellation of satellites. A first set of satellites of the constellation may be selected and then a second set of satellites of the constellation may be selected as a function of signals received from the first set of satellites. Data may be transmitted to the mobile device based on signals received from the second set of satellites, and a location of the device estimated based on the data. One embodiment may select the second set as a function of an intersection of coverage areas of ones of the first set of satellites. Another embodiment may select the second set as a function of one or more satellites that are not occluded by the Earth from one or more of the first set of satellites.
    • 一种使用来自卫星星座的信息来估计移动设备的位置的系统和方法。 可以选择星座的第一组卫星,然后可以根据从第一组卫星接收的信号来选择星座的第二组卫星。 数据可以基于从第二组卫星接收的信号和基于数据估计的设备的位置来发送到移动设备。 一个实施例可以选择第二组作为第一组卫星的覆盖区域的交点的函数。 另一实施例可以选择第二组作为一个或多个卫星的功能,所述卫星未被第一组卫星中的一个或多个接收的地球遮挡。
    • 15. 发明申请
    • METHODS AND APPARATUS TO LOCATE A WIRELESS DEVICE
    • 定位无线设备的方法和设备
    • US20100283679A1
    • 2010-11-11
    • US12775288
    • 2010-05-06
    • David LevyAvraham BaumLeonardo William Estevez
    • David LevyAvraham BaumLeonardo William Estevez
    • G01S19/12G01S3/02
    • G01S5/02H04W60/00H04W76/14
    • Methods and apparatus to locate a wireless device are described. A disclosed example method includes transmitting a request location message from a first wireless station to a second wireless station to determine a geographic location of a third wireless station, receiving a response location message at the first wireless station from the second wireless station identifying the geographic location of the third wireless station, wherein the second wireless station stores the geographic location of the third wireless station, determining a path from the first wireless station to a range of the third wireless station based on the received geographic location of the third wireless station, moving along a portion of the path with the first wireless station to the range of the third wireless station, and transmitting an association message from the first wireless station to the third wireless station to communicably couple the first wireless station to the third wireless station.
    • 描述了定位无线设备的方法和设备。 所公开的示例性方法包括将请求位置消息从第一无线站发送到第二无线站以确定第三无线站的地理位置,从第二无线站接收标识地理位置的第一无线站处的响应位置消息 ,其中所述第二无线站存储所述第三无线站的地理位置,基于所接收的所述第三无线站的地理位置确定从所述第一无线站到所述第三无线站的范围的路径,移动 沿着与第一无线站的路径的一部分到第三无线站的范围,以及将关联消息从第一无线站发送到第三无线站,以将第一无线站可通信地耦合到第三无线站。
    • 16. 发明申请
    • METHOD AND APPARATUS FOR PROCESSING A SATELLITE POSITIONING SYSTEM SIGNAL USING A CELLULAR ACQUISITION SIGNAL
    • 使用细胞获取信号处理卫星定位系统信号的方法和装置
    • US20100225537A1
    • 2010-09-09
    • US12638076
    • 2009-12-15
    • Charles Abraham
    • Charles Abraham
    • G01S19/12
    • G01S19/256G01S19/235G01S19/258
    • Method and apparatus for processing satellite positioning system signals is described. In one example, assistance data is received at a mobile receiver from a first wireless network using a wireless transceiver. The first wireless network may be a non-synchronized cellular network. A time synchronization signal is obtained from a second wireless network at the mobile receiver using a wireless receiver. A time offset is then determined in response to the time synchronization signal. Satellite signals are processed at the mobile receiver using the assistance data and the time offset. The second wireless network may be a synchronized cellular network or may be a non-synchronized cellular network that is externally synchronized to GPS time.
    • 描述了用于处理卫星定位系统信号的方法和装置。 在一个示例中,使用无线收发器从移动接收机从第一无线网络接收辅助数据。 第一无线网络可以是非同步蜂窝网络。 使用无线接收机从移动接收机的第二无线网络获得时间同步信号。 然后响应于时间同步信号确定时间偏移。 使用辅助数据和时间偏移在移动接收机处理卫星信号。 第二无线网络可以是同步的蜂窝网络,或者可以是外部与GPS时间同步的非同步蜂窝网络。
    • 17. 发明申请
    • METHOD AND APPARATUS FOR DETERMINING ABSOLUTE TIME-OF-DAY IN A MOBILE-ASSISTED SATELLITE POSITIONING SYSTEM
    • 用于确定移动辅助卫星定位系统中绝对时间的方法和装置
    • US20100156705A1
    • 2010-06-24
    • US12718525
    • 2010-03-05
    • Frank van DiggelenCharles Abraham
    • Frank van DiggelenCharles Abraham
    • G01S19/12
    • G01S19/258G01S19/27
    • A method and apparatus for determining time-of-day in a mobile receiver is described. In one example, expected pseudoranges to a plurality of satellites are obtained. The expected pseudoranges are based on an initial position of the mobile receiver and an initial time-of-day. Expected line-of-sight data to said plurality of satellites is also obtained. Pseudoranges from said mobile receiver to said plurality of satellites are measured. Update data for the initial time-of-day is computed using a mathematical model relating the pseudoranges, the expected pseudoranges, and the expected line-of-sight data. The expected pseudoranges and the expected line-of-sight data may be obtained from acquisition assistance data transmitted to the mobile receiver by a server. Alternatively, the expected pseudoranges may be obtained from acquisition assistance data, and the expected line-of-sight data may be computed by the mobile receiver using stored satellite trajectory data, such as almanac data.
    • 描述了一种用于确定移动接收机中的时间的方法和装置。 在一个示例中,获得对多个卫星的预期伪距。 预期伪距基于移动接收机的初始位置和初始时间。 还获得了对所述多颗卫星的视线数据。 测量从所述移动接收机到所述多个卫星的伪距离。 使用与伪距,预期伪距和预期视线数据相关联的数学模型来计算初始时间的更新数据。 可以从服务器发送到移动接收器的获取辅助数据获得期望的伪距和预期的视线数据。 或者,可以从获取辅助数据获得期望的伪距,并且可以由移动接收机使用存储的卫星轨迹数据(诸如年历数据)来计算预期的视距数据。
    • 19. 发明申请
    • RTK positioning system and positioning method therefor
    • RTK定位系统及其定位方法
    • US20050080563A1
    • 2005-04-14
    • US10936452
    • 2004-09-08
    • Ivan PetrovskiHideyuki Torimoto
    • Ivan PetrovskiHideyuki Torimoto
    • G01S1/00G01S5/12G01S19/11G01S19/12G01S19/44
    • G01S19/44G01S19/11
    • The locations of pseudolites and the location of a stationary reference station are previously known by a user processing unit, and codes and carrier phase of signals transmitted from the pseudolites are measured by the stationary reference station, a moving reference station and a rover receiver. Data of the codes and the carrier phase measured by the stationary reference station, the moving reference station and the rover receiver are transmitted to the user processing unit using a data link. The user processing unit determines a baseline between the stationary reference station and the moving reference station, and a baseline between the moving reference station and the rover receiver. The two baselines and the previously known location of the stationary reference station are employed to determine the position of the rover receiver.
    • 伪卫星的位置和静止参考站的位置由用户处理单元预先已知,并且由伪卫星发射的信号的编码和载波相位由静止参考站,移动参考站和流动站接收机测量。 由固定参考站,移动参考站和流动站接收器测量的代码和载波相位的数据使用数据链路传送到用户处理单元。 用户处理单元确定固定参考站和移动参考站之间的基线以及移动参考站和流动站接收器之间的基线。 使用两个基线和先前已知的静止参考站的位置来确定流动站接收机的位置。
    • 20. 发明授权
    • Method and receiver using a low earth orbiting satellite signal to
augment the global positioning system
    • 使用低地球轨道卫星信号的方法和接收机来增强全球定位系统
    • US5944770A
    • 1999-08-31
    • US969350
    • 1997-11-28
    • Per K. EngeNicholas Charles Talbot
    • Per K. EngeNicholas Charles Talbot
    • G01S1/00G01S5/14G01S19/07G01S19/11G01S19/12G01S19/31H04B7/185G06F165/00G01S5/02
    • G01S19/44G01S19/04H04B7/18552
    • A method and an apparatus using a low Earth orbiting (LEO) satellite signal to augment the Global Positioning System (GPS) for finding a location vector between a GPS user receiver and a GPS reference receiver. The GPS user receiver computes a LEO user-reference carrier phase difference and a GPS user-reference carrier phase difference for the LEO satellite signal and a GPS satellite signal, respectively, received simultaneously at the GPS user receiver and the GPS reference receiver. Carrier phase double differences are computed from a difference between the GPS user-reference carrier phases from two GPS satellites and either the LEO user-reference carrier phases from two LEO satellites or the GPS user-reference carrier phase from one GPS satellite and the LEO user-reference carrier phase from one LEO satellite. The location vector is computed from a difference between the double differences for two satellite geometries. The GPS reference receiver communicates the reference carrier phase data to the GPS user receiver through the LEO satellite. An ionospheric delay model is determined by tracking the LEO satellite signal as the LEO satellite traverses the sky. An optional calibrator corrects for measurement delay in determining the carrier phases in the GPS user receiver and the GPS reference receiver.
    • 一种使用低地球轨道(LEO)卫星信号来增加全球定位系统(GPS)以在GPS用户接收机和GPS参考接收机之间找到位置矢量的方法和装置。 GPS用户接收机分别计算在GPS用户接收机和GPS参考接收机上同时接收的LEO卫星信号和GPS卫星信号的LEO用户参考载波相位差和GPS用户参考载波相位差。 从两个GPS卫星的GPS用户参考载波相位和来自两个LEO卫星的LEO用户参考载波相位或来自一个GPS卫星的GPS用户参考载波相位和LEO用户之间的差异计算载波相位差 - 一个LEO卫星的参考载波相位。 位置矢量是根据两个卫星几何的双重差异之差计算的。 GPS参考接收机通过LEO卫星将参考载波相位数据传送给GPS用户接收机。 电离层延迟模型是通过LEO卫星穿越天空跟踪LEO卫星信号来确定的。 可选的校准器校正GPS用户接收机和GPS参考接收机中确定载波相位的测量延迟。