会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 41. 发明授权
    • Self-aligned via and air gap
    • 自对准通孔和气隙
    • US09368395B1
    • 2016-06-14
    • US14270660
    • 2014-05-06
    • GLOBALFOUNDRIES Inc.
    • Andy Chih-Hung WeiMark A. Zaleski
    • H01L21/768H01L23/48
    • H01L23/5226H01L21/76802H01L21/76805H01L21/76807H01L21/7682H01L21/76834H01L21/76877H01L21/76883H01L21/76897H01L23/481H01L23/5283H01L23/5329H01L29/0649
    • Provided are approaches for forming a self-aligned via and an air gap within a semiconductor device. Specifically, one approach produces a device having: a first metal line beneath a second metal line within an ultra low-k (ULK) dielectric, the first metal line connected to the second metal line by a first via; a dielectric capping layer formed over the second metal line; a third metal line within first and second via openings formed within a ULK fill material formed over the dielectric capping layer, wherein the third metal line within the first via opening extends to a top surface of the dielectric capping layer, and wherein the third metal line within the second via opening is connected to the second metal by a second via passing through the dielectric capping layer; and an air gap formed between the third metal line within the first and seconds via openings.
    • 提供了用于在半导体器件内形成自对准通孔和气隙的方法。 具体地,一种方法产生一种器件,其具有:在超低k(ULK)电介质中的第二金属线下方的第一金属线,所述第一金属线通过第一通孔连接到所述第二金属线; 形成在所述第二金属线上的电介质覆盖层; 形成在形成在电介质覆盖层上的ULK填充材料内的第一和第二通孔内的第三金属线,其中第一通孔开口内的第三金属线延伸到介电覆盖层的顶表面,并且其中第三金属线 在第二通孔开口内通过穿过电介质盖层的第二通孔连接到第二金属; 以及形成在第一和第二通孔之间的第三金属线之间的气隙。
    • 42. 发明授权
    • Nitride spacer for protecting a fin-shaped field effect transistor (finFET) device
    • 用于保护鳍状场效应晶体管(finFET)器件的氮化物间隔物
    • US09306036B2
    • 2016-04-05
    • US13953833
    • 2013-07-30
    • GLOBALFOUNDRIES Inc.
    • Michael Ganz
    • H01L29/66H01L29/78
    • H01L21/02362G06F17/505G06F2217/02H01L21/0217H01L27/0207H01L29/66636H01L29/66795H01L29/785
    • Approaches for protecting a semiconductor device (e.g., a fin field effect transistor device (FinFET)) using a nitride spacer are provided. Specifically, a nitride spacer is formed over an oxide and a set of fins of the FinFET device to mitigate damage during subsequent processing. The nitride spacer is deposited before the block layers to protect the oxide on top of a set of gates in an open area of the FinFET device uncovered by a photoresist. The oxide on top of each gate will be preserved throughout all of the block layers to provide hardmask protection during subsequent source/drain epitaxial layering. Furthermore, the fins that are open and uncovered by the photoresist or the set of gates remain protected by the nitride spacer. Accordingly, fin erosion caused by amorphization of the fins exposed to resist strip processes is prevented, resulting in improved device yield.
    • 提供了使用氮化物间隔物来保护半导体器件(例如,鳍式场效应晶体管器件(FinFET))的方法。 具体地说,在FinFET器件的一个氧化物和一组鳍片之上形成一个氮化物间隔物,以减轻随后的处理过程中的损坏。 在阻挡层之前沉积氮化物间隔物,以在未被光致抗蚀剂覆盖的FinFET器件的开放区域中的一组栅极的顶部上保护氧化物。 每个栅极顶部的氧化物将保留在所有块层中,以在随后的源/漏外延层分层期间提供硬掩模保护。 此外,由光致抗蚀剂或该组栅极打开和未覆盖的翅片仍然被氮化物间隔物保护。 因此,防止由于暴露于抗蚀剂剥离处理的翅片的非晶化而引起的翅片侵蚀,从而提高了器件的产率。
    • 47. 发明授权
    • Spacer chamfering for a replacement metal gate device
    • 更换金属门装置的间隔倒角
    • US09129986B2
    • 2015-09-08
    • US13929923
    • 2013-06-28
    • GLOBALFOUNDRIES Inc.
    • Hui ZangHyun-Jin Cho
    • H01L29/66H01L29/78
    • H01L29/785H01L29/0653H01L29/1079H01L29/42372H01L29/6653H01L29/66545H01L29/66795
    • Approaches for spacer chamfering in a replacement metal gate (RMG) device are provided. Specifically, a semiconductor device is provided with a set of fins formed from a substrate; a silicon-based layer conformally deposited over the set of fins; an etch-stop layer (e.g., titanium nitride (TiN)) formed over the silicon-based layer, the etch-stop layer being selective to at least one of: silicon, oxide, and nitride; a set of RMG structures formed over the substrate; a set of spacers formed along each of the set of RMG structures, wherein a vertical layer of material from each of the set of spacers is removed selective to the etch-stop layer. By chamfering each sidewall spacer, a wider area for subsequent work-function (WF) metal deposition is provided. Meanwhile, each transistor channel region is covered by the etch-stop layer (e.g., TiN), which maintains the original gate critical dimension during reactive ion etching.
    • 提供了替代金属门(RMG)设备中间隔倒角的方法。 具体地,半导体器件设置有由基板形成的一组翅片; 保形地沉积在该组翅片上的硅基层; 形成在硅基层上的蚀刻停止层(例如,氮化钛(TiN)),该蚀刻停止层对于硅,氧化物和氮化物中的至少一个是选择性的; 一组形成在衬底上的RMG结构; 沿着RMG结构集合中的每一个形成的一组隔离物,其中来自该组间隔物中的每一个的垂直材料层被选择性地移除到蚀刻停止层。 通过倒角每个侧壁间隔件,提供了用于后续功函(WF)金属沉积的较宽区域。 同时,每个晶体管沟道区域被蚀刻停止层(例如,TiN)覆盖,其在反应离子蚀刻期间维持原始栅极临界尺寸。
    • 48. 发明授权
    • Shallow trench isolation structure with sigma cavity
    • 浅沟槽隔离结构,带有Σ腔
    • US09076868B1
    • 2015-07-07
    • US14334953
    • 2014-07-18
    • GLOBALFOUNDRIES Inc.
    • HaoCheng TsaiMin-hwa Chi
    • H01L21/762H01L29/78H01L21/306H01L29/06H01L29/66
    • H01L29/0653H01L21/30608H01L21/3065H01L21/76224H01L21/76232H01L29/66568H01L29/66636H01L29/7846H01L29/7848
    • Embodiments of the present invention provide an improved shallow trench isolation structure and method of fabrication. The shallow trench isolation cavity includes an upper region having a sigma cavity shape, and a lower region having a substantially rectangular cross-section. The lower region is filled with a first material having good gap fill properties. The sigma cavity is filled with a second material having good stress-inducing properties. In some embodiments, source/drain stressor cavities may be eliminated, with the stress provided by the shallow trench isolation structure. In other embodiments, the stress from the shallow trench isolation structure may be used to complement or counteract stress from a source/drain stressor region of an adjacent transistor. This enables precise tuning of channel stress to achieve a desired carrier mobility for a transistor.
    • 本发明的实施例提供了一种改进的浅沟槽隔离结构和制造方法。 浅沟槽隔离腔包括具有西格玛腔形状的上部区域和具有基本矩形横截面的下部区域。 下部区域填充有具有良好间隙填充性能的第一材料。 西格玛腔填充有具有良好的应力诱导性能的第二材料。 在一些实施例中,可以消除源极/漏极应力源空穴,同时由浅沟槽隔离结构提供的应力。 在其他实施例中,来自浅沟槽隔离结构的应力可以用于补偿或抵消来自相邻晶体管的源极/漏极应力区域的应力。 这使得能够精确地调谐通道应力以实现晶体管的期望的载流子迁移率。