会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 53. 发明授权
    • Asymmetric epitaxy and application thereof
    • 不对称外延及其应用
    • US07989297B2
    • 2011-08-02
    • US12614699
    • 2009-11-09
    • Haizhou YinXinhui WangKevin K. ChanZhibin Ren
    • Haizhou YinXinhui WangKevin K. ChanZhibin Ren
    • H01L21/00
    • H01L21/26586H01L29/66628H01L29/66636H01L29/66659H01L29/7835
    • The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
    • 本发明提供了形成非对称场效应晶体管的方法。 所述方法包括在半导体衬底的顶部上形成栅极结构,所述栅极结构包括栅极叠层和邻近所述栅极堆叠的侧壁的间隔物,并且具有与所述第一侧相对的第一侧和第二侧; 从衬底中的栅极结构的第一侧进行成角度的离子注入,从而形成与第一侧相邻的离子注入区域,其中栅极结构防止成角度的离子注入到达邻近第二侧的衬底 门结构; 以及在栅极结构的第一和第二侧在衬底上进行外延生长。 结果,在离子注入区域上的外延生长比经历无离子注入的区域慢得多。 通过外延生长形成到栅极结构的第二侧的源极区域的高度高于通过外延生长形成于栅极结构的第一侧的漏极区域的高度。 还提供了由此形成的半导体结构。
    • 56. 发明申请
    • AMORPHIZATION/TEMPLATED RECRYSTALLIZATION METHOD FOR HYBRID ORIENTATION SUBSTRATES
    • 用于混合定向衬底的拟合/调制再结晶方法
    • US20100203708A1
    • 2010-08-12
    • US12767261
    • 2010-04-26
    • Keith Edward FogelKatherine L. SaengerChun-Yung SungHaizhou Yin
    • Keith Edward FogelKatherine L. SaengerChun-Yung SungHaizhou Yin
    • H01L21/26H01L21/322
    • H01L21/02675H01L21/02532H01L21/2022H01L21/76224H01L21/823807
    • The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. The process flow of the present invention solves two major difficulties not disclosed by prior art ATR methods: the creation of “corner defects” at the edges of amorphized Si regions bounded by trenches, and undesired orientation changes during a high temperature post-recrystallization defect-removal annealing of non-ATR'd regions not bounded by trenches. In particular, this invention provides a process flow comprising the steps of (i) amorphization and low-temperature recrystallization performed in substrate regions free of trenches, (ii) formation of trench isolation regions that subsume the defective regions at the edge of the ATR'd regions, and (iii) a high-temperature defect-removal anneal performed with the trench isolation regions in place.
    • 本发明提供了用于制造低缺陷密度混合取向基材的改进的非晶化/模板重结晶(ATR)方法。 用于混合取向衬底制造的ATR方法通常从具有第一取向键合到具有第二取向的第二Si层或衬底的Si层开始。 第一Si层的选定区域是非晶化的,然后通过使用第二Si层作为模板将其再结晶成第二Si层的取向。 本发明的工艺流程解决了现有技术ATR方法未公开的两个主要困难:在由沟槽界定的非晶化Si区域的边缘产生“角缺陷”,以及在高温后再结晶缺陷 - 未被沟槽限定的非ATR区域的去除退火。 特别地,本发明提供了一种工艺流程,其包括以下步骤:(i)在没有沟槽的衬底区域中进行非晶化和低温重结晶,(ii)形成在ATR'边缘处的缺陷区域的沟槽隔离区域的形成, d区域,以及(iii)在沟槽隔离区域中进行的高温缺陷去除退火。
    • 57. 发明授权
    • Amorphization/templated recrystallization method for hybrid orientation substrates
    • 混合取向基板的非晶化/模板重结晶方法
    • US07704852B2
    • 2010-04-27
    • US11871694
    • 2007-10-12
    • Keith E. FogelKatherine L. SaengerChun-Yung SungHaizhou Yin
    • Keith E. FogelKatherine L. SaengerChun-Yung SungHaizhou Yin
    • H01L21/76
    • H01L21/02675H01L21/02532H01L21/2022H01L21/76224H01L21/823807
    • The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. The process flow of the present invention solves two major difficulties not disclosed by prior art ATR methods: the creation of “corner defects” at the edges of amorphized Si regions bounded by trenches, and undesired orientation changes during a high temperature post-recrystallization defect-removal annealing of non-ATR'd regions not bounded by trenches. In particular, this invention provides a process flow comprising the steps of (i) amorphization and low-temperature recrystallization performed in substrate regions free of trenches, (ii) formation of trench isolation regions that subsume the defective regions at the edge of the ATR'd regions, and (iii) a high-temperature defect-removal anneal performed with the trench isolation regions in place.
    • 本发明提供了用于制造低缺陷密度混合取向基材的改进的非晶化/模板重结晶(ATR)方法。 用于混合取向衬底制造的ATR方法通常从具有第一取向键合到具有第二取向的第二Si层或衬底的Si层开始。 第一Si层的选定区域是非晶化的,然后通过使用第二Si层作为模板将其再结晶成第二Si层的取向。 本发明的工艺流程解决了现有技术ATR方法未公开的两个主要困难:在由沟槽界定的非晶化Si区域的边缘产生“角缺陷”,以及在高温后再结晶缺陷 - 未被沟槽限定的非ATR区域的去除退火。 特别地,本发明提供了一种工艺流程,其包括以下步骤:(i)在没有沟槽的衬底区域中进行非晶化和低温重结晶,(ii)形成在ATR'边缘处的缺陷区域的沟槽隔离区域的形成, d区域,以及(iii)在沟槽隔离区域中进行的高温缺陷去除退火。
    • 59. 发明申请
    • DUAL STRESS MEMORIZATION TECHNIQUE FOR CMOS APPLICATION
    • CMOS应用的双应力记忆技术
    • US20090298297A1
    • 2009-12-03
    • US12538110
    • 2009-08-08
    • Thomas S. KanarskyQiqing OuyangHaizhou Yin
    • Thomas S. KanarskyQiqing OuyangHaizhou Yin
    • H01L21/31
    • H01L21/823807H01L21/823412H01L21/823468H01L21/823864H01L29/7843H01L29/7847
    • A stress-transmitting dielectric layer is formed on the at least one PFET and the at least one NFET. A tensile stress generating film, such as a silicon nitride, is formed on the at least one NFET by blanket deposition and patterning. A compressive stress generating film, which may be a refractive metal nitride film, is formed on the at least one PFET by a blanket deposition and patterning. An encapsulating dielectric film is deposited over the compress stress generating film. The stress is transferred from both the tensile stress generating film and the compressive stress generating film into the underlying semiconductor structures. The magnitude of the transferred compressive stress from the refractory metal nitride film may be from about 5 GPa to about 20 GPa. The stress is memorized during an anneal and remains in the semiconductor devices after the stress generating films are removed.
    • 在至少一个PFET和至少一个NFET上形成应力传导电介质层。 通过毯式沉积和图案化在至少一个NFET上形成拉伸应力产生膜,例如氮化硅。 可以通过覆盖沉积和图案化在至少一个PFET上形成可以是折射金属氮化物膜的压应力产生膜。 在压缩应力产生膜上沉积密封电介质膜。 应力从拉伸应力产生膜和压缩应力产生膜转移到下面的半导体结构中。 来自难熔金属氮化物膜的转移的压缩应力的大小可以为约5GPa至约20GPa。 应力在退火期间被记忆,并且在除去应力产生膜之后保留在半导体器件中。
    • 60. 发明申请
    • Buried Stress Isolation for High-Performance CMOS Technology
    • 埋地应力隔离用于高性能CMOS技术
    • US20080185658A1
    • 2008-08-07
    • US12099195
    • 2008-04-08
    • MeiKei IeongZhibin RenHaizhou Yin
    • MeiKei IeongZhibin RenHaizhou Yin
    • H01L27/08H01L21/8238
    • H01L29/7846H01L21/823807H01L21/823878H01L21/84H01L27/1203H01L29/66772H01L29/78654H01L29/78696
    • A field effect transistor (FET) comprises a substrate; a buried oxide (BOX) layer over the substrate; a current channel region over the BOX layer; source/drain regions adjacent to the current channel region; a buried high-stress film in the BOX layer and regions of the substrate, wherein the high-stress film comprises any of a compressive film and a tensile film; an insulating layer covering the buried high-stress film; and a gate electrode over the current channel region, wherein the high-stress film is adapted to create mechanical stress in the current channel region, wherein the high-stress film is adapted to stretch the current channel region in order to create the mechanical stress in the current channel region; wherein the mechanical stress comprises any of compressive stress and tensile stress, and wherein the mechanical stress caused by the high-stress film causes an increased charge carrier mobility in the current channel region.
    • 场效应晶体管(FET)包括衬底; 在衬底上的掩埋氧化物(BOX)层; BOX层上的当前通道区域; 源极/漏极区域与当前沟道区域相邻; BOX层中的埋置的高应力膜和衬底的区域,其中高应力膜包括任何压缩膜和拉伸膜; 覆盖埋置的高应力膜的绝缘层; 以及在电流通道区域上的栅电极,其中所述高应力膜适于在所述电流通道区域中产生机械应力,其中所述高应力膜适于拉伸所述电流通道区域,以便产生机械应力 当前通道区域; 其中机械应力包括任何压缩应力和拉伸应力,并且其中由高应力膜引起的机械应力导致当前通道区域中电荷载流子迁移率增加。