会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 84. 发明授权
    • Solid state photosensitive devices which employ isolated photosynthetic complexes
    • 使用隔离光合复合物的固态感光装置
    • US07592539B2
    • 2009-09-22
    • US10704226
    • 2003-11-07
    • Peter PeumansStephen R. Forrest
    • Peter PeumansStephen R. Forrest
    • H01L31/00
    • H01L51/424B82Y10/00H01L27/30H01L51/0004H01L51/0021H01L51/0053H01L51/0062H01L51/0093H01L51/4206H01L51/4246H01L2251/308Y02E10/549
    • Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.
    • 提供包括光电器件的固态光敏器件,其包括重叠关系的第一电极和第二电极; 和在电极之间的至少一个孤立的光收集复合物(LHC)。 优选的感光装置包括由设置在第一电极和LHC之间的与LHC相邻的第一光电导有机半导体材料形成的电子传输层; 以及设置在第二电极和LHC之间的由LHC相邻的第二光电导有机半导体材料形成的空穴传输层。 本发明的固态感光器件可以包括设置在第一电极和电子传输层之间的至少一个附加的光电导有机半导体材料层; 以及设置在第二电极和空穴传输层之间的至少一个附加的光导有机半导体材料层。 提供了产生光电流的方法,其包括将本发明的光电器件暴露于光。 提供了包括本发明的固态感光装置的电子装置。
    • 86. 发明授权
    • High mobility high efficiency organic films based on pure organic materials
    • 基于纯有机材料的高迁移率高效有机薄膜
    • US07482195B2
    • 2009-01-27
    • US11529367
    • 2006-09-29
    • Rhonda F. SalzmanStephen R. Forrest
    • Rhonda F. SalzmanStephen R. Forrest
    • H01L21/00
    • H01L51/0025H01L51/0053H01L51/0078H01L51/424H01L51/4246H01L51/4253Y02E10/549Y10T436/25
    • A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.
    • 纯化小分子有机材料的方法,作为从有机小分子材料的第一样品开始的一系列操作进行。 第一步是通过热梯度升华纯化有机小分子材料。 第二步是通过光谱法从纯化的有机小分子材料中测试至少一种样品的纯度。 第三步是重复纯化的小分子材料上的第一至第三步骤,如果光谱测试显示超过目标有机小分子的特征峰值的阈值百分比的峰值。 步骤至少进行两次。 阈值百分比至多为10%。 阈值百分比优选为5%,更优选为2%。 可以基于在成品设备中实现目标性能特征的过去样品的光谱来选择阈值百分比。
    • 88. 发明授权
    • Method of fabricating an optoelectronic device having a bulk heterojunction
    • 制造具有体异质结的光电器件的方法
    • US07435617B2
    • 2008-10-14
    • US10999716
    • 2004-11-30
    • Max ShteinFan YangStephen R. Forrest
    • Max ShteinFan YangStephen R. Forrest
    • H01L51/40H01L35/24
    • B82Y30/00H01L51/0008H01L51/0053H01L51/0078H01L51/4213H01L51/4246H01L51/4253H01L2251/308Y02E10/549Y02P70/521
    • A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.
    • 制造光电器件的方法包括:在第一电极上沉积具有突起的第一层,其中第一层包含第一有机小分子材料; 在所述第一层上沉积第二层,使得所述第二层与所述第一层物理接触; 其中突起的最小横向尺寸为第一有机小分子材料的激子扩散长度的1至5倍; 以及在所述第二层上沉积第二电极以形成所述光电器件。 还提供了制造具有体异质结的有机光电子器件的方法,其包括:通过有机气相沉积在电极上沉积具有突起的第一层; 在第一层上沉积第二层,其中第一和第二层的界面形成体异质结; 并在第二层上沉积另一电极。
    • 89. 发明授权
    • Method of fabricating an optoelectronic device having a bulk heterojunction
    • 制造具有体异质结的光电器件的方法
    • US07419846B2
    • 2008-09-02
    • US10824288
    • 2004-04-13
    • Max ShteinFan YangStephen R. Forrest
    • Max ShteinFan YangStephen R. Forrest
    • H01L51/48H01L51/42
    • B82Y30/00H01L51/0008H01L51/0053H01L51/0078H01L51/4213H01L51/4246H01L51/4253H01L2251/308Y02E10/549Y02P70/521
    • A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.
    • 制造具有本体异质结的有机光电子器件的方法包括以下步骤:通过有机气相沉积在第一电极上沉积第一层,其中第一层包含第一有机小分子材料; 在所述第一层上沉积第二层使得所述第二层与所述第一层物理接触,其中所述第一层上的所述第二层的界面形成体异质结; 以及在所述第二层上沉积第二电极以形成所述光电器件。 在另一个实施例中,具有突起的第一层沉积在第一电极上,其中第一层包括第一有机小分子材料。 例如,当第一层是电子供体层时,第一电极是阳极,第二层是电子受体层,第二电极是阴极。 作为另一个例子,当第一层是电子受体层时,第一电极是阴极,第二层是电子供体层,第二电极是阳极。
    • 90. 发明授权
    • Twin waveguide based design for photonic integrated circuits
    • 基于双波导的光子集成电路设计
    • US07302124B2
    • 2007-11-27
    • US09982001
    • 2001-10-18
    • Stephen R. ForrestMilind GokhalePavel Studenkov
    • Stephen R. ForrestMilind GokhalePavel Studenkov
    • G02B6/36G02B6/12H01S5/00
    • G02B6/12004B82Y20/00G02B6/12021G02B6/2813G02B2006/12121G02B2006/12178G02B2006/12195H01S5/1014H01S5/1032H01S5/1064H01S5/3403H01S5/34306H01S5/50
    • An asymmetric twin waveguide (ATG) structure is disclosed that significantly reduces the negative effects of inter-modal interference in symmetric twin-waveguide structures and which can be effectively used to implement a variety of optical devices. The ATG structure of the invention can be monolithically fabricated on a single epitaxial structure without the necessity of epitaxial re-growth. To achieve the ATG structure of the invention, the effective index of the passive waveguide in the ATG is varied from that of a symmetric twin waveguide such that one mode of the even and odd modes of propagation is primarily confined to the passive waveguide and the other to the active waveguide. The different effective indices of the two coupled waveguides result in the even and odd modes becoming highly asymmetric. As a result, the mode with the larger confinement factor in the active waveguide experiences higher gain and becomes dominant. In a further embodiment, the active waveguide is tapered to reduce coupling losses of the optical energy between the passive waveguide and the active waveguide. In a further embodiment, a grating region is incorporated atop the passive waveguide to select certain frequencies for transmission of light through the passive waveguide.
    • 公开了一种非对称双波导(ATG)结构,显着降低了对称双波导结构中模态间干扰的负面影响,可有效地用于实现各种光学器件。 本发明的ATG结构可以在单个外延结构上单片地制造,而不需要外延再生长。 为了实现本发明的ATG结构,ATG中的无源波导的有效指数与对称双波导的有效指数不同,使得偶数和奇数传播模式的一个模式主要限于无源波导和另一个 到有源波导。 两个耦合波导的不同有效指数导致均匀和奇数模式变得高度不对称。 结果,在有源波导中具有较大约束因子的模式经历较高的增益并成为主导的。 在另一个实施例中,有源波导是锥形的,以减少无源波导和有源波导之间的光能的耦合损耗。 在另一个实施例中,将光栅区域并入无源波导顶部,以选择某些频率以透射通过无源波导的光。