会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Multilayer flow path member of ultrasonic fluid measurement apparatus and ultrasonic fluid measurement apparatus
    • 超声波流体测量装置和超声波流体测量装置的多层流路构件
    • US08161824B2
    • 2012-04-24
    • US12668171
    • 2008-07-09
    • Masato SatouYukinori OzakiAkihisa Adachi
    • Masato SatouYukinori OzakiAkihisa Adachi
    • G01F1/66
    • G01F1/662G01F15/00
    • A multilayer flow path member of an ultrasonic fluid measurement apparatus and an ultrasonic fluid measurement apparatus capable of enhancing the measurement accuracy of the mean flow velocity are provided. When a multilayer flow path member 30 placed in a measurement flow path 14a shaped in a rectangular cross-section pipe of an ultrasonic fluid measurement apparatus 10 is partitioned into a plurality of flat flow paths 14e by partition plates 32 attached to a frame 31 along a flowing direction, the partition plates 32 are provided so as to face inner faces 15f and 17a of the measurement flow path 14a. Thus, the partition plates 32 are exposed and face the inner faces 15f and 17a of the measurement flow path 14a and thus the space between the exposed partition plate 32 and the inner face 15f, 17a of the measurement flow path 14a becomes the highest-stage or lowest-stage flat flow path 14e. Therefore, a problem of degrading the measurement accuracy as a fluid flows into the space between the frame 31 forming a part of the multilayer flow path member 30 and the inner face 15f, 17a of the measurement flow path 14a as before does not occur and accordingly the measurement accuracy can be enhanced.
    • 提供了能够提高平均流速的测量精度的超声波流体测量装置和超声波流体测量装置的多层流路构件。 当设置在超声波流体测量装置10的矩形截面管中的测量流路14a中的多层流路构件30被分隔成多个平坦的流路14e时,隔板32沿着框架31沿着 分隔板32设置成面对测量流路14a的内表面15f和17a。 因此,分隔板32暴露并且面对测量流路14a的内表面15f和17a,因此暴露的隔板32与测量流路14a的内表面15f,17a之间的空间变为最高级 或最下阶段平流路14e。 因此,作为流体的降低测量精度的问题流入形成多层流路构件30的一部分的框架31与以前的测量流路14a的内表面15f,17a之间的空间不相应地发生 可以提高测量精度。
    • 3. 发明授权
    • Ultrasonic flow rate measuring device having a plurality of ultrasonic flow rate sensors
    • 具有多个超声波流量传感器的超声波流量测量装置
    • US07980142B2
    • 2011-07-19
    • US12513563
    • 2007-11-08
    • Yuji NakabayashiAkihisa AdachiMasato Satou
    • Yuji NakabayashiAkihisa AdachiMasato Satou
    • G01F1/84
    • G01F1/667G01F5/00
    • The present invention is directed to an ultrasonic flow rate measuring device capable of improving the measurement accuracy. Such an ultrasonic flow rate measuring device comprises first to third ultrasonic flow rate sensors in the measurement passage which are equipped with first ultrasonic wave transmitter-receivers and second ultrasonic wave transmitter-receivers. First to third ultrasonic wave propagation paths connecting the first ultrasonic wave transmitter-receiver and the second ultrasonic wave transmitter-receivers, respectively, intersect at different angles with the flow direction of fluid flowing through the measurement passages. The ultrasonic flow rate measuring device of the present invention obtains a flow rate measurement selectively from one of the first to third ultrasonic flow rate sensors in response to a flow rate Q.
    • 本发明涉及能够提高测定精度的超声波流量测量装置。 这种超声波流量测量装置包括测量通道中的配备有第一超声波发射器 - 接收器和第二超声波发射器 - 接收器的第一至第三超声波流量传感器。 分别连接第一超声波发射器 - 接收器和第二超声波发射器 - 接收器的第一至第三超声波传播路径与流过测量通道的流体的流动方向以不同的角度相交。 本发明的超声波流量测量装置响应于流量Q,从第一至第三超声波流量传感器之一中选择性地获得流量测量值。
    • 7. 发明授权
    • Ultrasonic flowmeter having reduced phase difference
    • 超声波流量计具有减小的相位差
    • US06216544B1
    • 2001-04-17
    • US09202532
    • 1998-12-18
    • Akihisa AdachiYuji NakabayashiMasahiko HashimotoToshiharu SatoShigeru Iwanaga
    • Akihisa AdachiYuji NakabayashiMasahiko HashimotoToshiharu SatoShigeru Iwanaga
    • G01F166
    • G01F1/662
    • An ultrasonic flowmeter includes a flow path defined by four wall sections, a flow measurement section, a calculation section and a pair of ultrasonic oscillators for transmitting and receiving an ultrasonic wave over a distance. The flow path is configured to reduce the influence of a phase difference, which results from the varying propagation distances of a direct wave and a reflected wave, by changing one or more of the flow measurement section configuration, the ultrasonic wave frequency, the orientation of the ultrasonic oscillators, and the distance between the pair of ultrasonic oscillators. A measurement section is suitably configured to measure the propagation time of the ultrasonic wave propagating between the pair of ultrasonic oscillators. Additionally, a calculation section is suitably configured to receive measurements from the measurement section and to calculate the fluid flow in the flow measurement section.
    • 超声波流量计包括由四个壁部分限定的流动路径,流量测量部分,计算部分和一对用于在一定距离上发送和接收超声波的超声波振荡器。 流路被配置为通过改变流量测量部分配置,超声波频率,超声波频率的方向来减少由直接波和反射波的变化的传播距离引起的相位差的影响 超声波振荡器和一对超声波振荡器之间的距离。 测量部适当地配置为测量在一对超声波振荡器之间传播的超声波的传播时间。 此外,计算部适当地构成为从测量部接收测量值,并计算流量测量部中的流体流量。
    • 9. 发明申请
    • MULTILAYER FLOW PATH MEMBER OF ULTRASONIC FLUID MEASUREMENT APPARATUS AND ULTRASONIC FLUID MEASUREMENT APPARATUS
    • 超声波流量测量装置和超声波流体测量装置的多层流路构件
    • US20100192702A1
    • 2010-08-05
    • US12668171
    • 2008-07-09
    • Masato SatouYukinori OzakiAkihisa Adachi
    • Masato SatouYukinori OzakiAkihisa Adachi
    • G01F1/66
    • G01F1/662G01F15/00
    • A multilayer flow path member of an ultrasonic fluid measurement apparatus and an ultrasonic fluid measurement apparatus capable of enhancing the measurement accuracy of the mean flow velocity are provided. When a multilayer flow path member 30 placed in a measurement flow path 14a shaped in a rectangular cross-section pipe of an ultrasonic fluid measurement apparatus 10 is partitioned into a plurality of flat flow paths 14e by partition plates 32 attached to a frame 31 along a flowing direction, the partition plates 32 are provided so as to face inner faces 15f and 17a of the measurement flow path 14a. Thus, the partition plates 32 are exposed and face the inner faces 15f and 17a of the measurement flow path 14a and thus the space between the exposed partition plate 32 and the inner face 15f, 17a of the measurement flow path 14a becomes the highest-stage or lowest-stage flat flow path 14e. Therefore, a problem of degrading the measurement accuracy as a fluid flows into the space between the frame 31 forming a part of the multilayer flow path member 30 and the inner face 15f, 17a of the measurement flow path 14a as before does not occur and accordingly the measurement accuracy can be enhanced.
    • 提供了能够提高平均流速的测量精度的超声波流体测量装置和超声波流体测量装置的多层流路构件。 当设置在超声波流体测量装置10的矩形截面管中的测量流路14a中的多层流路构件30被分隔成多个平坦的流路14e时,隔板32沿着框架31沿着 分隔板32设置成面对测量流路14a的内表面15f和17a。 因此,分隔板32暴露并且面对测量流路14a的内表面15f和17a,因此暴露的隔板32与测量流路14a的内表面15f,17a之间的空间变为最高级 或最低级平流路14e。 因此,作为流体的降低测量精度的问题流入形成多层流路构件30的一部分的框架31与以前的测量流路14a的内表面15f,17a之间的空间不相应地发生 可以提高测量精度。
    • 10. 发明申请
    • ULTRASONIC FLUID MEASURING DEVICE
    • 超声波流体测量装置
    • US20100064821A1
    • 2010-03-18
    • US12513563
    • 2007-11-08
    • Yuji NakabayashiAkihisa AdachiMasato Satou
    • Yuji NakabayashiAkihisa AdachiMasato Satou
    • G01F1/66
    • G01F1/667G01F5/00
    • An ultrasonic fluid measuring device capable of improving a measuring accuracy is provided. In an ultrasonic fluid measuring device 10, first to third ultrasonic measuring portions 16 to 18 are equipped with first ultrasonic transmitter-receivers 16A to 18A and second ultrasonic transmitter-receivers 16B to 18B provided to a measuring pass 14 respectively, and also first to third ultrasonic propagation paths 36 to 38 connecting the first ultrasonic transmitter-receiver 16A to 18A and the second ultrasonic transmitter-receivers 16B to 18B are provided to intersect with a passing direction of a fluid 24 flowing through the measuring pass 14 at different angles respectively. The ultrasonic fluid measuring device 10 employs any one of measured values of the first to third ultrasonic measuring portions 16 to 18 in response to a flow rate Q.
    • 提供了能够提高测量精度的超声波流体测量装置。 在超声波流体测量装置10中,第一至第三超声波测量部分16至18分别配备有分别设置在测量通路14上的第一超声波发射器 - 接收器16A至18A和第二超声波发射器 - 接收器16B至18B,并且还具有第一至第三 连接第一超声波收发器16A至18A和第二超声波发射器 - 接收器16B至18B的超声波传播路径36至38分别与流过测量通路14的流体24的通过方向分别相交。 超声波流体测量装置10响应于流量Q,采用第一至第三超声波测量部16至18的测量值中的任何一个。