会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Bacteria Identification by Phage Induced Impedance Fluctuation Analysis
    • 噬菌体诱导阻抗波动分析的细菌鉴定
    • US20120252003A1
    • 2012-10-04
    • US13075250
    • 2011-03-30
    • Gabor SchmeraLaszlo Kish
    • Gabor SchmeraLaszlo Kish
    • C12Q1/70C12M1/42
    • G01N33/48735
    • Methods for detection and identification of bacteria within a sample include the step of inserting a pair of electrodes into the sample. A first impedance across the electrodes is established with a first AC voltage source having a first frequency. A phage is introduced into the sample, and impedance fluctuations that are caused by ion release by the bacteria due to the phage introduction are measured. The use of impedance fluctuations instead of voltage fluctuations to detect and identify bacteria minimizes 1/f noise effects and increases system sensitivity. To further increase system sensitivity by eliminating thermal noise, a second impedance across the electrodes can be established using a second AC voltage source at a second frequency. Second impedance fluctuations are cross-correlated to the first impedance fluctuations, and the cross-correlation results are analyzed to determine whether or not bacteria are present in the sample based on phage electrical activity.
    • 用于检测和鉴定样品中的细菌的方法包括将一对电极插入样品中的步骤。 利用具有第一频率的第一AC电压源建立电极两端的第一阻抗。 样品中引入了噬菌体,测量了由于引入噬菌体而导致细菌离子释放引起的阻抗波动。 使用阻抗波动代替电压波动来检测和识别细菌可以最大限度地降低1 / f噪声影响并提高系统灵敏度。 为了通过消除热噪声来进一步提高系统灵敏度,可以使用第二频率的第二AC电压源来建立电极两端的第二阻抗。 第二阻抗波动与第一阻抗波动相互关联,并且分析互相关结果以基于噬菌体电活动来确定样品中是否存在细菌。
    • 3. 发明授权
    • Noise assisted signal processor with nonlinearly coupled arrays of
nonlinear dynamic elements
    • 噪声辅助信号处理器,具有非线性动态元件的非线性耦合阵列
    • US6020782A
    • 2000-02-01
    • US893907
    • 1997-07-11
    • Terence R. AlbertAdi R. BulsaraGabor SchmeraMario Inchiosa
    • Terence R. AlbertAdi R. BulsaraGabor SchmeraMario Inchiosa
    • G06N7/08H03K5/00
    • G06N7/08
    • A signal processor utilizes a globally nonlinearly coupled array of nonlinear dynamic elements. In one embodiment of the invention, these elements take the form of bistable overdamped oscillators. The processor exploits the phenomenon of stochastic resonance to amplify a weak periodic signal embedded in noise. In this signal processor, a system or plurality of nonlinearly coupled overdamped oscillators is subject to a weak periodic signal embedded in a noise background. For communication or detection applications, this weak signal component is the signal of interest. A reference oscillator is chosen from the plurality of overdamped oscillators, and is given a time scale for relaxation that is longer than the remaining oscillators. The output of the reference oscillator is analyzed for signal processing purposes in response to the signal and noise. A detailed numerical analysis of the full dynamics of the bistable element represented by the reference oscillator has shown that the signal-to-noise ratio (SNR) of the entire processor system reaches a maximum at a critical noise variance value. By using a number of overdamped oscillators working together, an enhancement of SNR can be achieved over that of the use of a single oscillator.
    • 信号处理器利用非线性动态元件的全局非线性耦合阵列。 在本发明的一个实施例中,这些元件采用双稳态过阻尼振荡器的形式。 处理器利用随机共振现象来放大嵌入在噪声中的弱周期信号。 在该信号处理器中,系统或多个非线性耦合的过阻尼振荡器经受嵌入在噪声背景中的弱周期信号。 对于通信或检测应用,该弱信号分量是感兴趣的信号。 从多个过阻尼振荡器中选择参考振荡器,并给出比其余振荡器长的用于弛豫的时标。 分析参考振荡器的输出以响应于信号和噪声的信号处理目的。 由参考振荡器表示的双稳态元件的完整动力学的详细数值分析表明,整个处理器系统的信噪比(SNR)在临界噪声方差值下达到最大值。 通过使用多个过阻尼振荡器一起工作,可以实现比使用单个振荡器更高的SNR。
    • 4. 发明申请
    • Bacteria Identification by Phage Induced Impedance Fluctuation Analysis
    • 噬菌体诱导阻抗波动分析的细菌鉴定
    • US20130295556A1
    • 2013-11-07
    • US13936631
    • 2013-07-08
    • Gabor SchmeraLaszlo Kish
    • Gabor SchmeraLaszlo Kish
    • G01N27/02
    • G01N27/021G01N33/48735G01N33/56911
    • Methods for detection and identification of bacteria within a sample include the step of inserting a pair of electrodes into the sample. A first impedance across the electrodes is established with a first AC voltage source having a first frequency. A phage is introduced into the sample, and impedance fluctuations that are caused by ion release by the bacteria due to the phage introduction are measured. The use of impedance fluctuations instead of voltage fluctuations to detect and identify bacteria minimizes 1/f noise effects and increases system sensitivity. To further increase system sensitivity by eliminating thermal noise, a second impedance across the electrodes can be established using a second AC voltage source at a second frequency. Second impedance fluctuations are cross-correlated to the first impedance fluctuations, and the cross-correlation results are analyzed to determine whether or not bacteria are present in the sample based on phage electrical activity.
    • 用于检测和鉴定样品中的细菌的方法包括将一对电极插入样品中的步骤。 利用具有第一频率的第一AC电压源建立电极两端的第一阻抗。 样品中引入了噬菌体,测量了由于引入噬菌体而导致细菌离子释放引起的阻抗波动。 使用阻抗波动代替电压波动来检测和识别细菌可以最大限度地降低1 / f噪声影响并提高系统灵敏度。 为了通过消除热噪声来进一步提高系统灵敏度,可以使用第二频率的第二AC电压源来建立电极两端的第二阻抗。 第二阻抗波动与第一阻抗波动相互关联,并且分析互相关结果以基于噬菌体电活动来确定样品中是否存在细菌。