会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Direct Coupled Biasing Circuit for High Frequency Applications
    • 直接耦合偏置电路用于高频应用
    • US20120319673A1
    • 2012-12-20
    • US13163562
    • 2011-06-17
    • KhongMeng ThamZaw Soe
    • KhongMeng ThamZaw Soe
    • G05F3/02
    • H03K3/012G05F3/16H01Q1/50H03K17/56H04B5/0075
    • This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
    • 当设计高频(〜60GHz)电路时,本发明消除了对电容器耦合或变压器耦合的需要,以及与这些耦合技术相关联的不期望的寄生电容和电感。 在这个频率下,两个相邻阶段之间的距离需要最小化。 与电源或接地引线串联的谐振电路用于将偏置信号与高频信号隔离开来。 该谐振电路的引入允许第一级使用金属迹线直接耦合到下一级。 直接耦合技术将高频信号和偏置电压都通过下一级。 与AC耦合或变压器耦合方法相比,直接耦合方法克服了大的管芯面积使用,因为电容器和变压器都不需要在级之间传输高频信号。
    • 2. 发明授权
    • Method and apparatus of cancelling inductor coupling
    • 消除电感耦合的方法和装置
    • US08884713B2
    • 2014-11-11
    • US13474742
    • 2012-05-18
    • KhongMeng Tham
    • KhongMeng Tham
    • H03B5/08
    • H03B1/04H03B5/1212H03B5/1228H03B2202/04H03B2202/088
    • This invention compensates for the unintentional magnetic coupling between a first and second inductor of two different closely spaced inductors separated by a conversion circuit. A cancellation circuit formed from transistors senses the magnetic coupling in the first inductor and feeds a current opposite to the induced magnetic coupling captured by the second inductor such that the coupled magnetic coupling can be compensated and allows the first and second inductors to behave independently with regards to the coupled magnetic coupling between the first and second inductors. This allows the distance between the first and second inductors to be minimized which saves silicon area. In addition, the performance is improved since the overall capacitance in both circuits can be decreased. This cancellation technique to reduce the magnetic coupling between two closed placed inductively loaded circuits allows the design of a more compact and faster performing circuit.
    • 本发明补偿由转换电路分离的两个不同紧密间隔的电感器的第一和第二电感器之间的无意的磁耦合。 由晶体管形成的消除电路感测第一电感器中的磁耦合,并且馈送与由第二电感器捕获的感应磁耦合相反的电流,使得耦合的磁耦合可以被补偿,并允许第一和第二电感器独立地表现, 耦合到第一和第二电感器之间的耦合磁耦合。 这允许第一和第二电感器之间的距离最小化,从而节省了硅面积。 此外,由于可以降低两个电路中的整体电容,性能得到改善。 这种减少两个闭合放置的感应加载电路之间的磁耦合的消除技术允许设计更紧凑和更快的执行电路。
    • 3. 发明申请
    • Method and Apparatus of Cancelling Inductor Coupling
    • 取消电感耦合的方法和装置
    • US20130307613A1
    • 2013-11-21
    • US13474742
    • 2012-05-18
    • KhongMeng Tham
    • KhongMeng Tham
    • H03B1/04
    • H03B1/04H03B5/1212H03B5/1228H03B2202/04H03B2202/088
    • This invention compensates for the unintentional magnetic coupling between a first and second inductor of two different closely spaced inductors separated by a conversion circuit. A cancellation circuit formed from transistors senses the magnetic coupling in the first inductor and feeds a current opposite to the induced magnetic coupling captured by the second inductor such that the coupled magnetic coupling can be compensated and allows the first and second inductors to behave independently with regards to the coupled magnetic coupling between the first and second inductors. This allows the distance between the first and second inductors to be minimized which saves silicon area. In addition, the performance is improved since the overall capacitance in both circuits can be decreased. This cancellation technique to reduce the magnetic coupling between two closed placed inductively loaded circuits allows the design of a more compact and faster performing circuit.
    • 本发明补偿由转换电路分离的两个不同紧密间隔的电感器的第一和第二电感器之间的无意的磁耦合。 由晶体管形成的消除电路感测第一电感器中的磁耦合,并且馈送与由第二电感器捕获的感应磁耦合相反的电流,使得耦合的磁耦合可以被补偿,并允许第一和第二电感器独立地表现, 耦合到第一和第二电感器之间的耦合磁耦合。 这允许第一和第二电感器之间的距离最小化,从而节省了硅面积。 此外,由于可以降低两个电路中的整体电容,性能得到改善。 这种减少两个闭合放置的感应加载电路之间的磁耦合的消除技术允许设计更紧凑和更快的执行电路。
    • 4. 发明授权
    • Direct coupled biasing circuit for high frequency applications
    • 用于高频应用的直接耦合偏置电路
    • US09143204B2
    • 2015-09-22
    • US13163562
    • 2011-06-17
    • KhongMeng ThamZaw Soe
    • KhongMeng ThamZaw Soe
    • H03G3/10H04B5/00G05F3/16
    • H03K3/012G05F3/16H01Q1/50H03K17/56H04B5/0075
    • This invention eliminates the need for “capacitor coupling” or “transformer coupling,” and the associated undesirable parasitic capacitance and inductance associated with these coupling techniques when designing high frequency (˜60 GHz) circuits. At this frequency, the distance between two adjacent stages needs to be minimized. A resonant circuit in series with the power or ground leads is used to isolate a biasing signal from a high frequency signal. The introduction of this resonant circuit allows a first stage to be “directly coupled” to a next stage using a metallic trace. The “direct coupling” technique passes both the high frequency signal and the biasing voltage to the next stage. The “direct coupling” approach overcomes the large die area usage when compared to either the “AC coupling” or “transformer coupling” approach since neither capacitors nor transformers are required to transfer the high frequency signals between stages.
    • 当设计高频(〜60GHz)电路时,本发明消除了对“电容器耦合”或“变压器耦合”的需求以及与这些耦合技术相关联的不期望的寄生电容和电感。 在这个频率下,两个相邻阶段之间的距离需要最小化。 与电源或接地引线串联的谐振电路用于将偏置信号与高频信号隔离开来。 该谐振电路的引入允许使用金属迹线将第一级“直接耦合”到下一级。 “直接耦合”技术将高频信号和偏置电压都通过下一级。 与“交流耦合”或“变压器耦合”方法相比,“直接耦合”方法克服了大的管芯面积使用,因为既不需要电容器也不需要变压器来在级之间传输高频信号。