会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • CRYOGENIC COOLING SYSTEM WITH VENT
    • US20220333740A1
    • 2022-10-20
    • US17636801
    • 2020-07-10
    • OXFORD INSTRUMENTS NANOTECHNOLOGY TOOLS LIMITED
    • Tim FosterNeil Clarke
    • F17C3/08F25D3/10
    • A cryogenic cooling system is provided having a vessel, the vessel comprising extending along a longitudinal axis and configured to receive a sample probe movable along the longitudinal axis. One or more cooling members are thermally coupled to the vessel so as to produce a thermal gradient along the longitudinal axis of the vessel. A vent extends along the outside of the vessel and is configured to provide a pathway for a flow of gas from an inlet of the vent to an outlet of the vent. The inlet is in gaseous communication with the inside of the vessel and the outlet is in gaseous communication an environment external to the vessel. The inlet is arranged at a position along the vessel configured to obtain a temperature below 63 kelvin during operation of the one or more cooling members, and the outlet is arranged at a position configured to maintain a temperature above 273 kelvin when the outlet has a temperature below 63 kelvin. The vent further comprises a pressure relief element configured to open and close said pathway in dependence on the pressure within the vessel such that, when the pressure of a gas inside the vessel exceeds a safety threshold, the pressure relief element is opened so as to enable a flow of said gas from the inside of the vessel to the environment external to the vessel.
    • 2. 发明授权
    • Cryogenic cooling system
    • US11333404B2
    • 2022-05-17
    • US16441560
    • 2019-06-14
    • Oxford Instruments Nanotechnology Tools Limited
    • Anthony MatthewsMark Patton
    • F25B9/02F25B9/10F25B9/14F25D19/00F25B49/02G05D23/00F28F13/00
    • A cryogenic cooling system is provided comprising: a mechanical refrigerator, a heat pipe and a heat switch assembly. The mechanical refrigerator has a first cooled stage and a second cooled stage. The heat pipe has a first part coupled thermally to the second cooled stage and a second part coupled thermally to a target assembly. The heat pipe is adapted to contain a condensable gaseous coolant when in use. The heat switch assembly comprises one or more gas gap heat switches, a first end coupled thermally to the second cooled stage and a second end coupled thermally to the target assembly. The cryogenic cooling system is adapted to be operated in a heat pipe cooling mode in which the temperature of the second cooled stage is lower than the first cooled stage and wherein the temperature of the target assembly causes the coolant within the second part of the heat pipe to be gaseous and the temperature of the second cooled stage causes the coolant in the first part of the heat pipe to condense. The target assembly is cooled by the movement of the condensed liquid coolant from the first part of the heat pipe to the second part of the heat pipe during the heat pipe cooling mode. The cryogenic cooling system is further adapted to be operated in a gas gap cooling mode in which the temperature of the second cooled stage causes freezing of the coolant. The heat switch assembly is adapted to provide cooling from the second cooled stage to the target assembly during the gas gap cooling mode via the one or more gas gap heat switches.
    • 10. 发明申请
    • NAVIGATION FOR ELECTRON MICROSCOPY
    • US20210151287A1
    • 2021-05-20
    • US16632835
    • 2018-07-19
    • OXFORD INSTRUMENTS NANOTECHNOLOGY TOOLS LIMITED
    • Anthony HydeJames HollandSimon BurgessPeter StathamPhilippe PinardJames Corrin
    • H01J37/28
    • A method and system for analyzing a specimen in a microscope are disclosed. The method comprises: acquiring a series of compound image frames using a first detector and a second detector, different from the first detector, wherein acquiring a compound image frame comprises: causing a charged particle beam to impinge upon a plurality of locations within a region of a specimen, the region corresponding to a configured field of view of the microscope, the microscope being configured with a set of microscope conditions, monitoring, in accordance with the configured microscope conditions, a first set of resulting particles generated within the specimen at the plurality of locations using the first detector so as to obtain a first image frame, monitoring, in accordance with the configured microscope conditions, a second set of resulting particles generated within the specimen at the plurality of locations using the second detector, so as to obtain a second image frame, wherein each image frame comprises a plurality of pixels corresponding to, and derived from the monitored particles generated at, the plurality of locations within the region, for each pixel of the second image frame, if the configured microscope conditions are the same as those for a stored second image frame of an immediately preceding acquired compound frame in the series, and if the respective pixel corresponds to a location within the region to which a stored pixel comprised by said stored second image frame corresponds, combining said stored pixel with the pixel so as to increase the signal-to-noise ratio for the pixel, and combining the first image frame and second image frame so as to produce the compound image frame, such that the compound image frame provides data derived from, for each of the plurality of pixels, the particles generated at the corresponding location within the region and monitored by each of the first detector and second detector; and displaying the series of compound image frames in real-time on a visual display.