会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • STRAIN BALANCED LASER DIODE
    • 应变平衡激光二极管
    • US20120213240A1
    • 2012-08-23
    • US13029723
    • 2011-02-17
    • Rajaram BhatDmitry S. SizovChung-En Zah
    • Rajaram BhatDmitry S. SizovChung-En Zah
    • H01S5/343
    • B82Y20/00H01S5/2031H01S5/3202H01S5/3216H01S5/3406H01S5/34333
    • According to the concepts of the present disclosure, laser diode waveguide configurations are contemplated where the use of Al in the waveguide layers of the laser is presented in the form of InGaN/Al(In)GaN waveguiding superstructure comprising optical confining wells (InGaN) and strain compensating barriers (Al(In)GaN). The composition of the optical confining wells is chosen such that they provide strong optical confinement, even in the presence of the Al(In)GaN strain compensating barriers, but do not absorb lasing emission. The composition of the strain compensating barriers is chosen such that the Al(In)GaN exhibits tensile strain that compensates for the compressive strain of InGaN optical confinement wells but does not hinder the optical confinement.
    • 根据本公开的概念,考虑了激光二极管波导配置,其中在激光器的波导层中使用Al以InGaN / Al(In)GaN波导上层结构的形式呈现,包括光学限制阱(InGaN)和 应变补偿屏障(Al(In)GaN)。 选择光学限制阱的组成,使得即使在存在Al(In)GaN应变补偿屏障的情况下也可以提供强的光学约束,但不吸收激光发射。 选择应变补偿屏障的组成使得Al(In)GaN表现出补偿InGaN光限制孔的压缩应变的拉伸应变,但不妨碍光学限制。
    • 2. 发明授权
    • GaN-based laser diodes with misfit dislocations displaced from the active region
    • 具有从有源区域移位的失配位错的GaN基激光二极管
    • US08189639B2
    • 2012-05-29
    • US12789936
    • 2010-05-28
    • Rajaram BhatDmitry Sizov
    • Rajaram BhatDmitry Sizov
    • H01S5/00
    • H01S5/34333B82Y20/00H01S5/3201H01S5/3202H01S5/3406H01S2301/173
    • A GaN-based edge emitting laser is provided comprising a semi-polar GaN substrate, an active region, an N-side waveguiding layer, a P-side waveguiding layer, an N-type cladding layer, and a P-type cladding layer. The GaN substrate is characterized by a threading dislocation density on the order of approximately 1×106/cm2. The strain-thickness product of the N-side waveguiding layer exceeds its strain relaxation critical value. In addition, the cumulative strain-thickness product of the active region calculated for the growth on a the relaxed N-side waveguiding layer is less than its strain relaxation critical value. As a result, the N-side interface between the N-type cladding layer and the N-side waveguiding layer comprises a set of N-side misfit dislocations and the P-side interface between the P-type cladding layer and the P-side waveguiding layer comprises a set of P-side misfit dislocations. Additional embodiments are disclosed and claimed.
    • 提供一种GaN基边缘发射激光器,其包括半极性GaN衬底,有源区,N侧波导层,P侧波导层,N型覆层和P型覆层。 GaN衬底的特征在于大约为1×106 / cm2的穿透位错密度。 N侧波导层的应变厚度乘积超过其应变松弛临界值。 此外,对于在松弛的N侧波导层上生长计算的有源区域的累积应变 - 厚度乘积小于其应变松弛临界值。 结果,N型覆层和N侧波导层之间的N侧界面包括一组N侧失配位错和P型覆层与P侧之间的P侧界面 波导层包括一组P侧错配位错。 公开并要求保护附加实施例。
    • 4. 发明申请
    • GROWTH METHODOLOGY FOR LIGHT EMITTING SEMICONDUCTOR DEVICES
    • 用于发光半导体器件的生长方法
    • US20110136280A1
    • 2011-06-09
    • US12633216
    • 2009-12-08
    • Rajaram Bhat
    • Rajaram Bhat
    • H01L33/04H01L33/32
    • H01L21/0254H01L21/02458H01L21/02507H01L21/0262H01L33/007
    • A method of manufacturing an optoelectronic light emitting semiconductor device is provided where a Multi-quantum Well (MQW) subassembly is subjected to reduced temperature vapor deposition processing to form one or more of n-type or p-type layers over the MQW subassembly utilizing a plurality of precursors and an indium surfactant. The precursors and the indium surfactant are introduced into the vapor deposition process at respective flow rates with the aid of one or more carrier gases, at least one of which comprises H2. The indium surfactant comprises an amount of indium sufficient to improve crystal quality of the p-type layers formed during the reduced temperature vapor deposition processing and the respective precursor flow rates and the H2 content of the carrier gas are selected to maintain a mole fraction of indium from the indium surfactant to be less than approximately 1% in the n-type or p-type layers. In another embodiment, the reduced temperature vapor deposition processing is executed at a reduced temperature TG, where TG≦TB±5% and TB is the MQW barrier layer growth temperature. Additional embodiments are disclosed and claimed.
    • 提供了一种制造光电子发射半导体器件的方法,其中多量子阱(MQW)子组件经受降温气相沉积处理,以在MQW子组件上形成一个或多个n型或p型层,利用 多种前体和铟表面活性剂。 前驱体和铟表面活性剂借助于一种或多种载气以相应的流速引入气相沉积工艺中,其中至少一种载体包含H 2。 铟表面活性剂包括足以提高在降温气相沉积处理期间形成的p型层的晶体质量的铟量,并且选择各自的前体流速和载气的H 2含量以保持铟的摩尔分数 在n型或p型层中,铟铟表面活性剂的含量小于约1%。 在另一个实施方案中,降温气相沉积处理在降低的温度TG下进行,其中TG< NE; TB±5%和TB是MQW阻挡层生长温度。 公开并要求保护附加实施例。
    • 5. 发明申请
    • Enhanced P-Contacts For Light Emitting Devices
    • 用于发光设备的增强型P触点
    • US20110049469A1
    • 2011-03-03
    • US12553288
    • 2009-09-03
    • Rajaram BhatJerome NapieralaDmitry SizovJingqun XiChung-En Zah
    • Rajaram BhatJerome NapieralaDmitry SizovJingqun XiChung-En Zah
    • H01L33/00
    • H01L33/02H01L33/32H01L33/40
    • An optoelectronic light emitting semiconductor device is provided comprising an active region, a p-type Group III nitride layer, an n-type Group III nitride layer, a p-side metal contact layer, an n-side metal contact layer, and an undoped tunneling enhancement layer. The p-side metal contact layer is characterized by a work function W satisfying the following relation: W≦e−AFF±0.025 eV where e−AFF is the electron affinity of the undoped tunneling enhancement layer. The undoped tunneling enhancement layer and the p-type Group III nitride layer comprise conduction and valence energy bands. The top of the valence band V1 of the undoped tunneling enhancement layer is above the top of the valence band V2 of the p-type Group III nitride layer at the band offset interface to generate a capacity for a relatively high concentration of holes in the undoped tunneling enhancement layer at the band offset interface. Additional embodiments are disclosed and claimed.
    • 提供了一种光电子发光半导体器件,其包括有源区,p型III族氮化物层,n型III族氮化物层,p侧金属接触层,n侧金属接触层和未掺杂的 隧道增强层。 p侧金属接触层的特征在于满足以下关系的功函数W:W≦̸ e-AFF±0.025eV其中e-AFF是未掺杂的隧道增强层的电子亲和力。 未掺杂的隧道增强层和p型III族氮化物层包括导电和价态能带。 未掺杂的隧道增强层的价带V1的顶部在带偏移界面处高于p型III族氮化物层的价带V2的顶部,以产生未掺杂的较高浓度的孔的能力 隧道增强层在带偏移接口。 公开并要求保护附加实施例。
    • 7. 发明授权
    • InP-based heterojunction bipolar transistor with reduced base-collector capacitance
    • 基于InP的异质结双极晶体管具有降低的基极集电极电容
    • US06285044B1
    • 2001-09-04
    • US09291499
    • 1999-04-14
    • Rajaram Bhat
    • Rajaram Bhat
    • H01L2970
    • H01L29/66318H01L29/7371
    • A heterojunction bipolar transistor based on the InP/InGaAs materials family and its method of making. An n-type collector layer, principally composed of InP is epitaxially grown on an insulating InP substrate by vapor phase epitaxy. The collector layer is then laterally defined into a stack, and semi-insulating InP is regrown around the sides of the stack to the extent that it planarizes with the stack top. The semi-insulating InP electrically isolates the collector stack. A thin base layer of p-type InGaAs, preferably lattice matched to InP, is grown over the collector stack, and n-type emitter layer is grown over the base layer. A series of photolithographic steps then defines a small emitter stack and a base that extends outside of the area of the emitter and collector stacks. The reduced size of the interface between the base and the collector produces a lower base-collector capacitance and hence higher speed of operation for the transistor.
    • 基于InP / InGaAs材料族的异质结双极晶体管及其制备方法。 主要由InP组成的n型集电极层通过气相外延在绝缘InP衬底上外延生长。 然后将集电极层横向地限定为堆叠,并且半绝缘InP在堆叠的侧面重新生长到与堆叠顶部平坦化的程度。 半绝缘InP电绝缘集电极堆叠。 在集电极堆叠上生长优选与InP晶格匹配的p型InGaAs的薄基底层,并且在基底层上生长n型发射极层。 一系列光刻步骤然后限定了小的发射极堆和延伸到发射极和集电极堆的区域外部的基极。 基极和集电极之间的界面尺寸减小会产生较低的基极 - 集电极电容,因此晶体管的工作速度更高。
    • 9. 发明授权
    • Enhanced planarity in GaN edge emitting lasers
    • GaN边缘发射激光器的增强平面度
    • US08218595B2
    • 2012-07-10
    • US12789956
    • 2010-05-28
    • Rajaram Bhat
    • Rajaram Bhat
    • H01S5/00
    • H01S5/3201B82Y20/00H01S5/3202H01S5/3216H01S5/34333
    • A GaN edge emitting laser is provided comprising a semi-polar GaN substrate, an active region, an N-side waveguiding layer, a P-side waveguiding layer, an N-type cladding layer, and a P-type cladding layer. The GaN substrate defines a 20 21 crystal growth plane and a glide plane. The N-side and P-side waveguiding layers comprise a GaInN/GaN or GaInN/GaInN superlattice (SL) waveguiding layers. The superlattice layers of the N-side and P-side SL waveguiding layers define respective layer thicknesses that are optimized for waveguide planarity, the layer thicknesses being between approximately 1 nm and approximately 5 nm. In accordance with another embodiment of the present disclosure, planarization can be enhanced by ensuring that the N-side and P-side GaN-based waveguiding layers are grown at a growth rate that exceeds approximately 0.09 nm/s, regardless of whether the N-side and P-side GaN-based waveguiding layers are provided as a GaInN/GaN or GaInN/GaInN SL or as bulk waveguiding layers. In still further embodiments, planarization can be enhanced by selecting optimal SL layer thicknesses and growth rates. Additional embodiments are disclosed and claimed.
    • 提供GaN边缘发射激光器,其包括半极性GaN衬底,有源区,N侧波导层,P侧波导层,N型覆层和P型覆层。 GaN衬底限定了20 21晶体生长平面和滑动平面。 N侧和P侧波导层包括GaInN / GaN或GaInN / GaInN超晶格(SL)波导层。 N侧和P侧SL波导层的超晶格层限定针对波导平面度优化的各层厚度,层厚度在约1nm至约5nm之间。 根据本公开的另一实施例,可以通过确保以超过约0.09nm / s的生长速率生长N侧和P侧GaN基波导层来增强平坦化,而不管N- 作为GaInN / GaN或GaInN / GaInN SL或作为体波导层提供侧面和P侧GaN基波导层。 在另外的实施例中,可以通过选择最佳SL层厚度和生长速率来增强平坦化。 公开并要求保护附加实施例。
    • 10. 发明申请
    • ENHANCED PLANARITY IN GaN EDGE EMITTING LASERS
    • GaN边缘发射激光器中的增强平面图
    • US20110292958A1
    • 2011-12-01
    • US12789956
    • 2010-05-28
    • Rajaram Bhat
    • Rajaram Bhat
    • H01S5/343H01S5/34H01L33/04
    • H01S5/3201B82Y20/00H01S5/3202H01S5/3216H01S5/34333
    • A GaN edge emitting laser is provided comprising a semi-polar GaN substrate, an active region, an N-side waveguiding layer, a P-side waveguiding layer, an N-type cladding layer, and a P-type cladding layer. The GaN substrate defines a 20 21 crystal growth plane and a glide plane. The N-side and P-side waveguiding layers comprise a GaInN/GaN or GaInN/GaInN superlattice (SL) waveguiding layers. The superlattice layers of the N-side and P-side SL waveguiding layers define respective layer thicknesses that are optimized for waveguide planarity, the layer thicknesses being between approximately 1 nm and approximately 5 nm. In accordance with another embodiment of the present disclosure, planarization can be enhanced by ensuring that the N-side and P-side GaN-based waveguiding layers are grown at a growth rate that exceeds approximately 0.09 nm/s, regardless of whether the N-side and P-side GaN-based waveguiding layers are provided as a GaInN/GaN or GaInN/GaInN SL or as bulk waveguiding layers. In still further embodiments, planarization can be enhanced by selecting optimal SL layer thicknesses and growth rates. Additional embodiments are disclosed and claimed.
    • 提供GaN边缘发射激光器,其包括半极性GaN衬底,有源区,N侧波导层,P侧波导层,N型覆层和P型覆层。 GaN衬底限定了20 21晶体生长平面和滑动平面。 N侧和P侧波导层包括GaInN / GaN或GaInN / GaInN超晶格(SL)波导层。 N侧和P侧SL波导层的超晶格层限定针对波导平面度优化的各层厚度,层厚度在约1nm至约5nm之间。 根据本公开的另一实施例,可以通过确保以超过约0.09nm / s的生长速率生长N侧和P侧GaN基波导层来增强平坦化,而不管N- 作为GaInN / GaN或GaInN / GaInN SL或作为体波导层提供侧面和P侧GaN基波导层。 在另外的实施例中,可以通过选择最佳SL层厚度和生长速率来增强平坦化。 公开并要求保护附加实施例。