会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method and system using GNSS phase measurements for relative positioning
    • 使用GNSS相位测量的方法和系统进行相对定位
    • US08271194B2
    • 2012-09-18
    • US12554741
    • 2009-09-04
    • Michael L. WhiteheadSteven R. MillerJohn A. McClureCary DavisWalter J. Feller
    • Michael L. WhiteheadSteven R. MillerJohn A. McClureCary DavisWalter J. Feller
    • G01C21/00
    • G01C15/00G01S5/0063G01S19/14G01S19/36G01S19/53G05D1/0206G05D1/0259G05D1/027G05D1/0278
    • A method for locating GNSS-defined points, distances, directional attitudes and closed geometric shapes includes the steps of providing a base with a base GNSS antenna and providing a rover with a rover GNSS antenna and receiver. The receiver is connected to the rover GNSS antenna and is connected to the base GNSS antenna by an RF cable. The receiver thereby simultaneously processes signals received at the antennas. The method includes determining a vector directional arrow from the differential positions of the antennas and calculating a distance between the antennas, which can be sequentially chained together for determining a cumulative distance in a “digital tape measure” mode of operation. A localized RTK surveying method uses the rover antenna for determining relative or absolute point locations. A system includes a base with an antenna, a rover with an antenna and a receiver, with the receiver being connected to the antennas. A processor is provided for computing positions, directional vectors, areas and other related tasks.
    • 用于定位GNSS定义的点,距离,方向态度和闭合的几何形状的方法包括以下步骤:向基站提供基站GNSS天线并向流动站提供流动站GNSS天线和接收机。 接收机连接到漫游器GNSS天线,并通过RF电缆连接到基站GNSS天线。 接收器由此同时处理在天线处接收到的信号。 该方法包括从天线的差分位置确定矢量方向箭头并计算天线之间的距离,其可以被连续地链接在一起以确定“数字卷尺”操作模式中的累积距离。 本地RTK测量方法使用流动站天线来确定相对位置或绝对点位置。 系统包括具有天线的基座,具有天线的漫游器和接收器,接收器连接到天线。 提供了一种用于计算位置,方向向量,区域和其他相关任务的处理器。
    • 4. 发明申请
    • GNSS GUIDANCE AND MACHINE CONTROL
    • GNSS指导和机器控制
    • US20100312428A1
    • 2010-12-09
    • US12857298
    • 2010-08-16
    • André C. RobergeWalter J. FellerMichael L. WhiteheadJohn A. McClureSteven R. Miller
    • André C. RobergeWalter J. FellerMichael L. WhiteheadJohn A. McClureSteven R. Miller
    • G05D1/00G01S19/42G01S19/41G06F9/44
    • A01B79/005A01B69/007G01S19/04G01S19/14G01S19/41G01S19/44G01S19/53G01S19/55G05D1/0259G05D1/027G05D1/0274G05D1/0278G05D1/0291G05D2201/0201G05D2201/0202
    • A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, guiding multiple vehicles and pieces of equipment relative to each other and earth-moving equipment and method applications.
    • 一种用于车辆转向控制的全球导航卫星传感器系统(GNSS)和陀螺仪控制系统,其包括GNSS接收器和固定间隔的天线,以确定车辆位置,速度以及行驶角,俯仰角和侧倾角 基于载波相位差。 滚动角度有助于校正当车辆基于对地面的偏移和侧倾角度而移动时由天线的运动产生的横向运动引起的位置误差。 该系统还包括被配置为接收车辆位置,航向以及滚动和俯仰中的至少一个的控制系统,并被配置为产生对车辆转向系统的转向命令。 该系统包括用于确定相对于多个轴的系统姿态变化的陀螺仪,用于与GNSS导航的定位信息集成以确定车辆位置,速度,转弯角度,姿态和其他操作特性。 车辆控制方法包括以下步骤:使用GNSS定位来计算车辆的位置和航向,以及用于确定用于产生转向命令的车辆姿态的速率陀螺仪。 替代方面包括用于高动态滚动补偿的多天线GNSS指导方法,使用单频(L1)接收机的实时运动学(RTK),天线之间的固定和移动基线,多位置GNSS尾部指导(“面包屑跟踪” )用于交叉错误校正,引导多个车辆和设备相对于彼此和移动设备和方法应用。
    • 6. 发明申请
    • MULTIPLE-ANTENNA GNSS CONTROL SYSTEM AND METHOD
    • 多天线GNSS控制系统及方法
    • US20090164067A1
    • 2009-06-25
    • US12355776
    • 2009-01-17
    • Michael L. WhiteheadWalter J. FellerJohn A. McClureSteven R. Miller
    • Michael L. WhiteheadWalter J. FellerJohn A. McClureSteven R. Miller
    • G01C21/28
    • G01C15/00A01B79/005G01S5/0063G01S5/0247G01S19/14G01S19/53G05D1/0259G05D1/027G05D1/0278G05D2201/0201
    • A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction and guiding multiple vehicles and pieces of equipment relative to each other.
    • 一种用于车辆转向控制的全球导航卫星传感器系统(GNSS)和陀螺仪控制系统,其包括GNSS接收器和固定间隔的天线,以确定车辆位置,速度以及行驶角,俯仰角和侧倾角 基于载波相位差。 滚动角度有助于校正当车辆基于对地面的偏移和侧倾角度而移动时由天线的运动产生的横向运动引起的位置误差。 该系统还包括被配置为接收车辆位置,航向以及滚动和俯仰中的至少一个的控制系统,并被配置为产生对车辆转向系统的转向命令。 该系统包括用于确定相对于多个轴的系统姿态变化的陀螺仪,用于与GNSS导航的定位信息集成以确定车辆位置,速度,转弯角度,姿态和其他操作特性。 车辆控制方法包括以下步骤:使用GNSS定位来计算车辆的位置和航向,以及用于确定用于产生转向命令的车辆姿态的速率陀螺仪。 替代方面包括用于高动态滚动补偿的多天线GNSS指导方法,使用单频(L1)接收机的实时运动学(RTK),天线之间的固定和移动基线,多位置GNSS尾部指导(“面包屑跟踪” ),用于交叉错误校正,并相对于彼此引导多个车辆和设备。
    • 7. 发明授权
    • Vehicle suspension with a dock height holding device
    • 具有码头高度保持装置的车辆悬架
    • US06786509B2
    • 2004-09-07
    • US09992496
    • 2001-11-06
    • Kenneth G. LangSteven R. MillerJames EckelberryRichard M. Clisch
    • Kenneth G. LangSteven R. MillerJames EckelberryRichard M. Clisch
    • B60G17005
    • B60G17/052B60G17/005
    • A vehicle suspension assembly includes a height holding device that is at least partially supported within an air spring of the suspension assembly. The height holding device includes a hydraulic ram. A moveable portion of the hydraulic ram moves between a first position where a minimum clearance is maintained between suspension components and a second position where a larger clearance is maintained between the suspension components. The height holding device moves into the second position to maintain a desired height of the truck or trailer bed during loading and unloading operations at a loading dock, for example. The height holding device allows for the suspension air springs to be evacuated of air pressure during loading or unloading conditions without a change in deck height.
    • 车辆悬架组件包括至少部分地支撑在悬架组件的空气弹簧内的高度保持装置。 高度保持装置包括液压柱塞。 液压压头的可移动部分在悬架部件之间保持最小间隙的第一位置和在悬架部件之间保持较大间隙的第二位置之间移动。 例如,高度保持装置移动到第二位置以在装载坞的装载和卸载操作期间保持卡车或拖车床的期望高度。 高度保持装置允许悬挂空气弹簧在装载或卸载条件下排空空气压力,而不会改变甲板高度。
    • 10. 发明授权
    • Self-energizing brake
    • 自动制动
    • US4946007A
    • 1990-08-07
    • US240497
    • 1989-01-23
    • David F. PedersonSteven R. Miller
    • David F. PedersonSteven R. Miller
    • B62L1/14F16D55/46F16D65/14
    • F16D55/46B62L1/14F16D2127/08Y10T74/18984Y10T74/19721
    • A self-energizing brake which includes opposed rocker arms attached to a frame by a bolt or the like. The rocker arms also include a housing extending transversely therefrom which is rotatable about the bolt. The housing encloses a tubular member having a plurality of helical ridges which mate with a plurality of bearings disposed about the inner surface of the housing. The housing is axially movable relative to the bolt. The housing is sealed about the bolt by O-rings and contains a lubricant such as grease. Friction pads extend from each rocker arm adjacent the rim of a tire to contact the rotating rim as the rocker arms are related. Such rotation results in movement of the housing in an axial direction as the rim drags the friction pads forward. This axial motion of the housings caused by the drag of the friction pads on the tire rim is transferred into rotational motion of the rocker arms by the cooperating relationship of helical ridges and bearings to thereby increase the pressure of the friction pads against the tire rim.
    • 一种自增力制动器,其包括通过螺栓等附接到框架的相对的摇臂。 摇臂还包括可从其横向延伸的壳体,该壳体可围绕螺栓旋转。 壳体包围管状构件,该管状构件具有多个螺旋脊,其与围绕壳体的内表面设置的多个轴承配合。 壳体可相对于螺栓轴向移动。 外壳通过O形圈围绕螺栓密封,并含有润滑剂如润滑脂。 当摇臂相关时,摩擦垫从邻近轮胎边缘的每个摇臂延伸以接触旋转轮辋。 当轮圈向前拖动摩擦垫时,这种旋转导致壳体在轴向上的移动。 由轮胎边缘上的摩擦垫的拖动引起的壳体的这种轴向运动通过螺旋脊和轴承的协作关系转移到摇臂的旋转运动中,从而增加摩擦垫对轮胎边缘的压力。