会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • MEMBRANES, SEPARATORS, BATTERIES, AND METHODS
    • 膜,隔离器,电池和方法
    • US20170025658A1
    • 2017-01-26
    • US15216861
    • 2016-07-22
    • Celgard, LLC
    • Lie ShiC. Glen WensleyZhengming ZhangKatharine ChemelewskiJunqing MaRonnie E. SmithKwantai ChoWeifeng FangChangqing Wang AdamsIan McCallumJun NadaShante P. WilliamsJacob S. Mangum
    • H01M2/14H01M10/0525H01M6/14H01G11/52C23C14/20C23C14/08B05D1/00H01G11/84H01M2/16C23C14/24
    • H01M2/145B05D1/60B05D1/62C23C14/081C23C14/20C23C14/24H01G11/52H01G11/84H01M2/1613H01M2/162H01M2/1646H01M2/1653H01M2/1686H01M6/14H01M10/052H01M10/0525Y02T10/7011
    • In accordance with at least selected embodiments, novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries are disclosed. In accordance with at least certain embodiments, novel or improved microporous membranes, battery separator membranes, separators, energy storage devices, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are disclosed. In accordance with at least certain selected embodiments, a separator for a battery which has an oxidation protective and binder-free deposition layer which is stable up to 5.2 volts or more, for example, up to 7 volts, in a battery is disclosed. The deposition layer is preferably a thin, very thin or ultra-thin deposition on a polymeric microporous membrane applied via a binder-free and solvent-free deposition method. By employing such an ultra-thin deposition layer, the energy density of a battery may be increased. In accordance with at least particular embodiments, the battery separator membrane described herein is directed to a multi-layer or composite microporous membrane battery separator which may have excellent oxidation resistance and may be stable in a high voltage battery system up to 5.2 volts or more. In accordance with at least other certain selected embodiments, the present invention is directed to a separator for a battery which has a conductive deposition layer which is stable up to at least 5.2 volts or higher in a battery.
    • 根据至少选择的实施方案,新颖或改进的多孔膜或基底,隔离膜,分离器,复合材料,电化学装置,电池,制造这种膜或基底的方法,隔板和/或电池,和/或使用这些膜的方法 公开了膜或基板,隔板和/或电池。 根据至少某些实施方案,新颖或改进的微孔膜,电池隔膜,分离器,能量存储装置,包括这种分离器的电池,制造这种膜,隔离膜和/或电池的方法和/或使用这种膜的方法 ,分离器和/或电池被公开。 根据至少某些所选择的实施例,公开了一种用于电池的隔板,其具有在电池中稳定高达5.2伏特或更高,例如高达7伏特的氧化保护和无粘合剂的沉积层。 沉积层优选是通过无粘合剂和无溶剂的沉积方法施加的聚合物微孔膜上的薄的,非常薄的或超薄的沉积物。 通过采用这种超薄的沉积层,可以提高电池的能量密度。 根据至少具体的实施方案,本文所述的电池分离器膜涉及多层或复合微孔膜电池隔膜,其可以具有优异的抗氧化性,并且在高达5.2伏或更高的高压电池系统中可以是稳定的。 根据至少其他某些所选择的实施例,本发明涉及一种用于电池的隔板,其具有导电沉积层,其在电池中至多稳定在至少5.2伏或更高。
    • 4. 发明申请
    • MICROPOROUS MEMBRANES, SEPARATORS, LITHIUM BATTERIES, AND RELATED METHODS
    • 微孔膜,分离器,锂电池及相关方法
    • US20160301052A1
    • 2016-10-13
    • US15093899
    • 2016-04-08
    • Celgard, LLC
    • Changqing Wang AdamsMichael BielmannZhengming Zhang
    • H01M2/14H01M10/0525H01M2/16
    • H01M2/145H01M2/1653H01M2/1686H01M10/0525
    • In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed. The ionized radiation treatment may provide a microporous membrane or battery separator having a lower onset temperature of thermal shutdown, an extended thermal shutdown window, physical, dimensional, and/or mechanical integrity maintained at higher temperatures, improved battery safety performance in a rechargeable lithium battery, a treated polyethylene separator membrane with the high temperature performance of a polypropylene membrane or separator membrane, or polypropylene-based trilayer product (by way of example only, a trilayer membrane made of two polypropylene layers with a polyethylene layer in between), reduced thermal shrinkage resulting in both improved thermal stability and high temperature physical integrity, which maintains the separation of cathode and anode in a battery system and avoids thermal runaway in a rechargeable or secondary lithium battery, and/or combinations thereof.
    • 根据至少一些选择的实施方案,公开或提供了新的或改进的隔膜,分离器,包括这种隔板的电池,制造这种膜和/或隔板的方法和/或使用这种膜和/或隔板的方法。 根据至少某些实施方案,电离辐射处理的微孔聚烯烃,聚乙烯(PE),共聚物和/或聚合物共混物(例如,包含PE和另一聚合物如聚丙烯(PP)的共聚物或共混物)电池隔板 公开了二次或可充电锂电池和/或制造电离辐射处理的微孔电池隔板的方法。 电离辐射处理可以提供具有较低的热关断起始温度,延长的热关断窗口,在较高温度下保持的物理,尺寸和/或机械完整性的微孔膜或电池隔板,改善可再充电锂电池中的电池安全性能 ,具有聚丙烯膜或隔膜的高温性能或聚丙烯基三层产品(仅举例来说,由两层聚丙烯层制成的三层膜,其间具有聚乙烯层)的经处理的聚乙烯隔膜,减热 收缩导致改善的热稳定性和高温物理完整性,其保持电池系统中阴极和阳极的分离并避免可再充电或次级锂电池中的热失控和/或其组合。
    • 9. 发明申请
    • MICROPOROUS MEMBRANES, SEPARATORS, LITHIUM BATTERIES, AND RELATED METHODS
    • US20200067046A1
    • 2020-02-27
    • US16574444
    • 2019-09-18
    • Celgard, LLC
    • Changqing Wang AdamsMichael BielmannZhengming Zhang
    • H01M2/14H01M2/16
    • In accordance with at least selected embodiments, novel or improved separator membranes, separators, batteries including such separators, methods of making such membranes and/or separators, and/or methods of using such membranes and/or separators are disclosed or provided. In accordance with at least certain embodiments, an ionized radiation treated microporous polyolefin, polyethylene (PE), copolymer, and/or polymer blend (e.g., a copolymer or blend comprising PE and another polymer, such as polypropylene (PP)) battery separator for a secondary or rechargeable lithium battery and/or a method of making an ionized radiation treated microporous battery separator is disclosed. The ionized radiation treatment may provide a microporous membrane or battery separator having a lower onset temperature of thermal shutdown, an extended thermal shutdown window, physical, dimensional, and/or mechanical integrity maintained at higher temperatures, improved battery safety performance in a rechargeable lithium battery, a treated polyethylene separator membrane with the high temperature performance of a polypropylene membrane or separator membrane, or polypropylene-based trilayer product (by way of example only, a trilayer membrane made of two polypropylene layers with a polyethylene layer in between), reduced thermal shrinkage resulting in both improved thermal stability and high temperature physical integrity, which maintains the separation of cathode and anode in a battery system and avoids thermal runaway in a rechargeable or secondary lithium battery, and/or combinations thereof.